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Foreword

It is with great pleasure that we welcome you to the beautiful city of Edinburgh, the historical home of sampling theory1,
for the 4th Workshop on Signal Processing with Adaptive Sparse Structured Representations: SPARS ’11.

Sparse models have already been applied with outstanding success in signal and image processing as well as in machine
learning. In machine learning they provide a powerful method for model order selection within regression and classifica-
tion problems (e.g. Lasso). While in signal processing they have led to many algorithms for de-noising, compression (e.g.
jpeg2000), de-blurring and more.

In particular, these techniques are at the core of compressed sensing, an emerging approach which proposes a radically
new viewpoint on signal acquisition compared to Shannon sampling. There are also strong connections between sparse
signal models and kernel methods, whose algorithmic success on large datasets relies deeply on sparsity.

The aim of this workshop is to bring together different work in this area from the applied mathematics, signal processing
and machine learning communities. Both theoretical developments and practical applications will be discussed. Although
each community is generally aware of the others’ work we hope that such a meeting will provide an excellent opportunity
for dialog between the communities.

As with any workshop of this type there is a great deal of work required to make it happen. We would like to take this
opportunity to thank the International Centre for Mathematical Sciences (ICMS) for not only managing the workshop
for us but also for substantially funding it – therefore making the extremely low registration fees possible. We would also
like to thanks our other sponsors: the UK Engineering and Science Research Council (EPSRC), and the London Math-
ematics Society (LMS) for financial assistance; and INRIA Rennes for the use of their website for the abstract submissions.

The other group of people without whom the conference would not happen is our team of PhD students and post-doctoral
researchers at the Edinburgh Centre for Compressed Sensing (E-CoS). Beyond their usual roles in E-CoS they have been
assigned various unenviable tasks to make sure that the workshop runs as smoothly as possible. For this we thank them.

Our final thanks go to our magnificent line up of plenary speakers. Despite high demand we have been able to secure this
world leading set of speakers from across the globe.

We sincerely hope that everyone will enjoy this workshop and that it will prove to be both enlightening and fun.

Coralia Cartis
Mike Davies
Jared Tanner

1E. T. Whittaker, “On the Functions Which are Represented by the Expansions of the Interpolation Theory”, Proc. Royal Soc. Edinburgh,
Sec. A, vol.35, pp. 181–194, 1915

2



Committees

Organisers
Coralia Cartis - School of Mathematics, University of Edinburgh, UK
Mike Davies - School of Engineering & Electronics, University of Edinburgh, UK
Jared Tanner - School of Mathematics, University of Edinburgh, UK

Steering Committee

Laurent Daudet - Universit Paris Diderot, France
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Technical Program

Monday 27 Tuesday 28 Wednesday 29 Thursday 30

09:00-09:50 Registration Francis Bach David L. Donoho Joel A. Tropp

09:50-10:20 Welcome (10:00) Coffee Break Coffee Break Coffee Break

10:20-11:20 Yi Ma
#5 Classification & #11 CS Theory #17 Dictionary Learning

Clustering #12 Sparsity Applications #18 A to D Conversions
#6 Structured Sparsity 1

11:20-11:50 Coffee Break Break Break Break

11:50-12:50

#19 Low Dimensional &
#1 Sparsity Theory #7 Random Matrix Theory #13 Generalized CS Analysis Sparse Model
#2 SAR Imaging #8 Structured Sparsity 2 #14 Estimation & Learning

Detection #20 Performance Evaluations

12:50-14:30 Lunch Lunch Lunch Lunch

14:30-15:20 David J. Brady Remi Gribonval Martin Vetterli Stephen Wright

15:20-16:00 Posters A & Coffee Posters A & Coffee Posters B & Coffee Posters B & Coffee

16:00-17:00

#15 Generalized
#3 Medical Imaging #9 Analysis Framework Sampling Techniques #21 PCA/ICA/BSS
#4 Sparse Approx. & #10 Dynamical & #16 Sparse Approx. & #22 Sparse Filter Design

CS Algorithms 1 Time-varying Systems CS Algorithms 2

Evening Wine
Reception, Whisky Tasting Excursion,

(18:00-21:00) £20 cost
(18:30-22:00)

Note: Plenary talks and sessions with odd numbers take place in the “Main Auditorium” (in the Queen
Mother Conference Centre) and sessions with even numbers take place in the “Great Hall”.
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14:30-15:20
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Plenary Talks: Tuesday 28
09:00-09:50
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Marta Betcke, Simon Arridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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Ambiguity Sparse Processes

Sofia Olhede . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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Tobias Lindstrøm Jensen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A New Recovery Analysis of Iterative Hard Thresholding for Compressed Sensing
Andrew Thompson, Coralia Cartis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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#17 Dictionary Learning (10:20-11:20)

Local optimality of dictionary learning algorithms
Boris Mailhé, Mark Plumbley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Approximate Message Passing for Bilinear Models
Philip Schniter, Volkan Cevher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Structure-Aware Non-Negative Dictionary Learning
Ken O’Hanlon, Mark Plumbley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

#18 Analogue to Digital Conversions (10:20-11:20)
Multi-Channel Analog-to-Digital (A/D) Conversion using Fewer A/D Converters than Channels

Ahmed H. Tewfik, Youngchun Kim, B. Vikrham Gowreesunker . . . . . . . . . . . . . . . . 70
Practical Design of a Random Demodulation Sub-Nyquist ADC

Stephen Becker, Juhwan Yoo, Mathew Loh, Azita Emami-Neyestanak, Emmanuel Candès . 71
Compressive Spectral Estimation Can Lead to Improved Resolution/Complexity Tradeoffs

Michael Lexa, Mike Davies, John Thompson . . . . . . . . . . . . . . . . . . . . . . . . . . 72

#19 Low Dimensional and Analysis Sparse Model Learning (11:50-12:50)
K-SVD Dictionary-Learning for Analysis Sparse Models

Ron Rubinstein, Michael Elad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Analysis Operator Learning for Overcomplete Cosparse Representations

Mehrdad Yaghoobi, Sangnam Nam, Remi Gribonval, Mike E. Davies . . . . . . . . . . . . 74
Learning hybrid linear models via sparse recovery

Eva Dyer, Aswin Sankaranarayanan, Richard Baraniuk . . . . . . . . . . . . . . . . . . . . 75

#20 Performance Evaluations (11:50-12:50)
Evaluating Dictionary Learning for Sparse Representation Algorithms using SMALLbox

Ivan Damnjanovic, Matthew Davies, Mark Plumbley . . . . . . . . . . . . . . . . . . . . . . 76
A Reproducible Research Framework for Audio Inpainting

Amir Adler, Valentin Emiya, Maria G. Jafari, Michael Elad, Rémi Gribonval . . . . . . . . 77
GPU Accelerated Greedy Algorithms for Sparse Approximation

Jeffrey Blanchard, Jared Tanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

#21 PCA/ICA/BSS (16:00-17:00)
Two Proposals for Robust PCA Using Semidefinite Programming

Michael McCoy, Joel Tropp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Blind Source Separation of Compressively Sensed Signals

Martin Kleinsteuber, Hao Shen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Finding Sparse Approximations to Extreme Eigenvectors: Generalized Power Method for Sparse
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Stable Embeddings of Time Series Data
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Estimating multiple filters from stereo mixtures: a double sparsity approach

Simon Arberet, Prasad Sudhakar, Rémi Gribonval . . . . . . . . . . . . . . . . . . . . . . . 83
Well-posedness of the frequency permutation problem in sparse filter estimation with lp minimization

Alexis Benichoux, Prasad Sudhakar, Rémi Gribonval . . . . . . . . . . . . . . . . . . . . . 84

Posters A
Optical wave field reconstruction based on nonlocal transform-domain sparse regularization for phase

and amplitude
Vladimir Katkovnik, Jaakko Astola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Efficient sparse representation based classification using hierarchically structured dictionaries
Jort Gemmeke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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An Alternating Direction Algorithm for (Overlapping) Group Regularization
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Inversion of 2-D images to estimate densities in R3

Dalia Chakrabarty, Fabio Rigat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Constrained Non-Negative Matrix Factorization for source separation in Raman Spectroscopy
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TILT and RASL: For Low-Rank Structures in Images and Data
Yi Ma

ECE Department, UIUC and VC Group, Microsoft Research Asia

Abstract—In this talk, we will introduce two fundamental compu-
tational tools, namely TILT and RASL, for extracting rich low-rank
structures in images and videos, respectively. Both tools utilize the same
transformed Robust PCA model for the visual data:

D ◦ τ = A + E (1)

and use practically the same algorithm for extracting the low-rank
structures A from the visual data D, despite image domain transforma-
tion τ and sparse corruptions E. We will show how these two seemingly
simple tools can help unleash tremendous information in images and
videos that we used to struggle to get. We believe these new tools will
bring disruptive changes to many challenging tasks in computer vision
and image processing, including feature extraction, image correspondence
or alignment, 3D reconstruction, and object recognition, etc.

Y i Ma is the research manager of the Visual Computing group at Microsoft
Research Asia in Beijing since January 2009. He is also an associate professor
at the Electrical & Computer Engineering Department of the University of
Illinois at Urbana-Champaign. His main research interest is in computer
vision, high-dimensional data analysis, and systems theory. He is the first
author of the popular vision textbook “An Invitation to 3-D Vision,” published
by Springer in 2003. Yi Ma received two Bachelors degree in Automation and
Applied Mathematics from Tsinghua University (Beijing, China) in 1995,
a Master of Science degree in EECS in 1997, a Master of Arts degree in
Mathematics in 2000, and a PhD degree in EECS in 2000, all from the
University of California at Berkeley. Yi Ma received the David Marr Best
Paper Prize at the International Conference on Computer Vision 1999, the
Longuet-Higgins Best Paper Prize at the European Conference on Computer
Vision 2004, and the Sang Uk Lee Best Student Paper Award with his students
at the Asian Conference on Computer Vision in 2009. He also received the
CAREER Award from the National Science Foundation in 2004 and the
Young Investigator Award from the Office of Naval Research in 2005. He
is an associate editor of IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) and the International Journal of Computer Vision (IJCV).
He has served as the chief guest editor for special issues for the Proceedings
of IEEE and the IEEE Signal Processing Magazine. He will also serve as
Program Chair for ICCV 2013 in Sydney, Australia. He is a senior member
of IEEE and a member of ACM, SIAM, and ASEE.

This is joint work with John Wright of Columbia, Emmanuel Candes of
Stanford, and my students Zhengdong Zhang, Xiao Liang, Yigang Peng of
Tsinghua, Arvind Ganesh of UIUC.
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Coding for Multiplex Optical Imaging

David J. Brady
Duke Imaging and Spectroscopy Program, Department of Electrical and Computer Engineering

Duke University, Durham, North Carolina 20291-0291
www.disp.duke.edu

Abstract—Efficient sampling of sparse signals requires measurement
of linear feature projections. “Weighing design” consists of selecting
projection coefficients to satisfy mathematical and physical objectives.
This paper reviews the weighing design problem for applications in
spectral imaging, focal tomography and holography.

I. I NTRODUCTION

We consider linear measurement systems described by the forward
model g = Hf + n where g is measurement data,H is the
measurement operator,f is the object state andn is noise. The goal
of these systems is to estimate, e.g. to image,f giveng. If H is not
the identity operator then the system takes “multiplex measurements”
While radar and computed tomography aficinados may considerthe
multiplex designation redundant, from 1840 until 1950 imager design
emphasized physical design for focal transformations. Theadvent of
digital computers and electronic detectors changed this goal, but even
after 60 years the ensuing revolution is still evolving. Compressed
sensing theory focuses particular attention on Shannon’s work at
the start of this revolution. This paper considers the implications of
compressed sensing on two results in measurement theory from the
same era, specifically multiplex spectroscopy [1] and holography [2].

II. SPECTROSCOPY ANDSPECTRAL IMAGING

For over half a century, weighing design for multiplex spectroscopy
focused on linear estimators off given g. While Harwit and Sloan
acknowledge in the seminal work on this approach [3] that biased
estimators may achieve better results, very little work on coding for
nonlinear estimators appeared before 2000. An important exception
appears in work on computed tomographic imaging spectrometers,
which applied convex optimization to multiplex spectral imaging [4].
The goal of this work was to overcome a “missing cone” Radon
projections. More recently, my group has shown that Golay-style
coded apertures eliminate the missing cone and that compressed
sensing theory may be applied to estimate full 3D data cubes from
coded 2D snapshots [5].

While it is clear that significant advantages arise from the combina-
tion of coded projections and constrained optimization, optimal codes
for these systems are currently unknown. This is in sharp contrast
to previous theory for linear estimators, which showed Hadamard
codes to be optimal for additive noise and identity operators to be
optimal for Poisson noise. As my talk describes using both simulated
and experimental data, pseudo-random codes may outperformidentity
and Hadamard codes when combined with modern regularization and
optmization strategies.

III. F OCAL TOMOGRAPHY

Major practical successes in compressed sensing have arisen in
applications where it is physically impossible to implement H as
identity matrix. Spectral imaging is one such example, others arise
in various multidimensional tomographies. Natural imaging of 3D
scenes is tomographic problem of particular interest. Historically,
focal imaging systems are map 2D object planes to 2D image planes.

This model has been preferred because focal recording devices (e.g.
film and detector arrays) are confined to 2D surfaces. With theadvent
of computational imaging, however, the physical structureof the
measurement system need not be tied to the physical structure of
the image. Specifically, one should be able to implement multiplex
codes that enable direct estimation of 3D objects from snapshot data.
While adhoc tomographic recording strategies using cameraarrays
or pupil coding strategies have been attempted to achieve this goal,
systematic studies of codes for native 3D optical imaging are just
beginning. Image space coding strategies similar to those used in
coded aperture spectral imaging are particularly attractive for this
challenge.

IV. H OLOGRAPHY

Optical imaging inherently combines analog signal processing in
optical elements with digital image formation. Quasi-focal design
with compact kernel support is essential to reasonable rankmeasure-
ment on natural fields. Imagers using laser illumination, incontrast,
may achieve reasonable rank measurement operators with unbounded
sampling kernels. This allows lensless imaging over large apertures.
Unfortunaely, natural objects reflect laser light diffusely, meaning that
a random phase is added to the reflected field in each image pixel.
Such specular images are not sparse on any basis. This difficulty
may be overcome by estimating the magnitude of the scattering cross
section of each pixel, which forms a compressible image. Under this
approach one seeks to invert transformed statistics of measurement
data to estimate a particular set of object statistics [6]. Weighing
design for this application consists of selecting both the raw sampling
structure and the synthetic statistics taken as intermediate indicators
of the object state. Coding for this application introducesnew
challenges and opportunities and suggests novel statistical definitions
for the concept of compressive sampling.

REFERENCES
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Strutured Sparsity-Inducing Norms
through Submodular Functions

Francis Bach
INRIA - Ecole Normale Supérieure

Paris, France

Abstract—Sparse methods for supervised learning aim at finding good
linear predictors from as few variables as possible, i.e., with small
cardinality of their supports. This combinatorial selection problem is
often turned into a convex optimization problem by replacing the
cardinality function by its convex envelope (tightest convex lower bound),
in this case theℓ1-norm. In this work, we investigate more general set-
functions than the cardinality, that may incorporate prior knowledge
or structural constraints which are common in many applications:
namely, we show that for nondecreasing submodular set-functions, the
corresponding convex envelope can be obtained from its Lovasz extension,
a common tool in submodular analysis. This defines a family ofpolyhedral
norms, for which we provide generic algorithmic tools (subgradients
and proximal operators) and theoretical results (conditions for support
recovery or high-dimensional inference). By selecting specific submodular
functions, we can give a new interpretation to known norms, such as those
based on rank-statistics or grouped norms with potentiallyoverlapping
groups; we also define new norms, in particular ones that can be used
as non-factorial priors for supervised learning.

The concept of parsimony is central in many scientific domains.
In the context of statistics, signal processing or machine learning,
it takes the form of variable or feature selection problems,and is
commonly used in two situations: First, to make the model or the
prediction more interpretable or cheaper to use, i.e., evenif the
underlying problem does not admit sparse solutions, one looks for
the best sparse approximation. Second, sparsity can also beused
given prior knowledge that the model should be sparse. In these two
situations, reducing parsimony to finding models with low cardinality
turns out to be limiting, and structured parsimony has emerged as a
fruitful practical extension, with applications to image processing,
text processing or bioinformatics (see, e.g., [1], [2], [3], [4], [5],
[6], [7]). For example, in [4], structured sparsity is used to encode
prior knowledge regarding network relationship between genes, while
in [6], it is used as an alternative to structured non-parametric
Bayesian process based priors for topic models.

Most of the work based on convex optimization and the design of
dedicated sparsity-inducing norms has focused mainly on the specific
allowed set of sparsity patterns [1], [2], [4], [6]: ifw ∈ R

p denotes
the predictor we aim to estimate, andSupp(w) denotes its support,
then these norms are designed so that penalizing with these norms
only leads to supports from a given family of allowed patterns. In
this paper, we instead follow the approach of [8], [3] and consider
specific penalty functionsF (Supp(w)) of the support set, which go
beyond the cardinality function, but are not limited or designed to
only forbid certain sparsity patterns. These may also lead to restricted
sets of supports but their interpretation in terms of anexplicit penalty
on the support leads to additional insights into the behavior of
structured sparsity-inducing norms. While direct greedy approaches
(i.e., forward selection) to the problem are considered in [8], [3], we
provide convex relaxations to the functionw 7→ F (Supp(w)), which
extend the traditional link between theℓ1-norm and the cardinality

function.
This is done for a particular ensemble of set-functionsF , namely

nondecreasing submodular functions. Submodular functions may be
seen as the set-function equivalent of convex functions, and exhibit
many interesting properties—see [9] for a tutorial on submodular
analysis and [10], [11] for other applications to machine learning. In
this presentation, we will present the following contributions:

−We make explicit links between submodularity and sparsity by
showing that the convex envelope of the functionw 7→ F (Supp(w))
on theℓ∞-ball may be readily obtained from the Lovász extension
of the submodular function.

− We provide generic algorithmic tools, i.e., subgradients and
proximal operators, as well as theoretical guarantees, i.e., conditions
for support recovery or high-dimensional inference, that extend
classical results for theℓ1-norm and show that many norms may
be tackled by the exact same analysis and algorithms.

− By selecting specific submodular functions, we recover and
give a new interpretation to known norms, such as those based
on rank-statistics or grouped norms with potentially overlapping
groups [1], [2], [7], and we define new norms, in particular ones that
can be used as non-factorial priors for supervised learning. These are
illustrated on simulation experiments, where they outperform related
greedy approaches [3].

For more details, see [12].
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Sparsity & Co.: An Overview of Analysis vs Synthesis in
Low-Dimensional Signal Models

R. Gribonval
Centre INRIA Rennes - Bretagne Atlantique
Campus de Beaulieu, 35042 Rennes Cedex

France
Email: remi.gribonval@inria.fr

Abstract—In the past decade there has been a great interest in
a synthesis-based model for signals, based on sparse and redundant
representations. Such a model assumes that the signal of interest can be
composed as a linear combination of few columns from a given matrix (the
dictionary). An alternative analysis-based model can be envisioned, where
an analysis operator multiplies the signal, leading to a cosparse outcome.
How similar are the two signal models ? The answer obviously depends
on the dictionary/operator pair, and on the measure of (co)sparsity.

For dictionaries in Hilbert spaces that are frames, the canonical dual
is arguably the most natural associated analysis operator. When the
frame is localized, the canonical frame coefficients provide a near sparsest
expansion for several `p sparseness measures, p ≤ 1. However, for frames
which are not localized, this no longer holds true: the sparsest synthesis
coefficients may differ significantly from the canonical coefficients.

In general the sparsest synthesis coefficients may also depend strongly
on the choice of the sparseness measure, but this dependency vanishes for
dictionaries with a null space property and signals that are combinations
of sufficiently few columns from the dictionary. This uniqueness result,
together with algorithmic guarantees, is at the basis of a number of
signal reconstruction approaches for generic linear inverse problems (e.g.,
compressed sensing, inpainting, source separation, etc.).

Is there a similar uniqueness property when the data to be recon-
structed is cosparse rather than sparse ? Can one derive cosparse regu-
larization algorithms with performance guarantees ? Existing empirical
evidence in the litterature suggests that a positive answer is likely. In
recent work we propose a uniqueness result for the solution of linear
inverse problems under a cosparse hypothesis, based on properties of the
analysis operator and the measurement matrix. Unlike with the synthesis
model, where recovery guarantees usually require the linear independence
of sets of few columns from the dictionary, our results suggest that linear
dependencies between rows of the analysis operators may be desirable.
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Precise Optimality Results in Compressed Sensing
David Donoho

Departmemt of Statistics
Stanford University

Abstract—Of the many papers on compressed sensing and sparse
recovery to date, a large fraction concern qualitative phenomena, where
for example certain phenomena are observed “for sufficiently sparse
signals” and, while empirically it is clear that there is a sharp transition
in observable behavior as sparsity crosses a threshold, much existing
published research uses methods that are often unable to pinpoint the
transition point precisely. Of course, for engineering work, one would like
to have precise knowledge of the limits of compressed sensing, rather than
just qualitative knowledge.

Other results promise stability of certain recovery procedures with
unspecified stability constants C. Again, precise evaluations would be
more useful.

I will describe recent work giving precise asymptotic results on mean
squared error and other characteristics, of a range of recovery procedures
in a range of high-dimensional problems from sparse regression and
compressed sensing; these include results for LASSO, group LASSO, and
nonconvex sparsity penalty methods. A key application of such precise
formulas is their use in deriving precise optimality results which were
not known previously, and to our knowledge are not available by other
methods.

Approximate message passing, and ideas from minimax statistical
decision theory as well of statistical physics, are the key ingredients
to the results I will focus on. This is joint work over several papers
with several co-authors, including Andrea Montanari, Iain Johnstone,
and Arian Maleki.

I will also try to discuss precise results and methods of Tanner, of
Blanchard, Cartis, and Tanner, of Weiyu Xu and Hassibi, and of Stojnic.
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Sampling in the Age of Sparsity
Martin Vetterli

Ecole Polytechnique Fdrale de Lausanne, Switzerland and University of California, Berkeley, USA

Abstract—Sampling is a central topic not just in signal processing
and communications, but in all fields where the world is analog, but
computation is digital. This includes sensing, simulating, and rendering
the real world, estimating parameters, or using analog channels.

The question of sampling is very simple: when is there a onetoone
relationship between a continuoustime function and adequately acquired
samples of this function? Sampling has a rich history, dating back to
Whittaker, Nyquist, Kotelnikov, Shannon and others, and is an active
area of contemporary research with fascinating new results.

Classic results are on bandlimited functions, where taking measure-
ments at the Nyquist rate is sufficient for perfect reconstruction. These
results were extended to shiftinvariant and multiscale spaces during
the development of wavelets. All these methods are based on subspace
structures, and on linear approximation. Irregular sampling, with known
sampling times, relies of the theory of frames. These classic results can
be used to derive sampling theorems related to PDE’s, to mobile sensing
and as well as to sampling based on timing information.

Recently, nonlinear sampling methods have appeared. Nonlinear
approximation in wavelet spaces is powerful for approximation and
compression. This indicates that functions that are sparse in a basis
(but not necessarily on a fixed subspace) can be represented efficiently.
The idea is even more general than sparsity in a basis, as pointed
out in the framework of signals with finite rate of innovation. Such
signals are nonbandlimited continuoustime signals, but with a parametric
representation having a finite number of degrees of freedom per unit of
time. This leads to sharp results on sampling and reconstruction of such
sparse continuoustime signals, leading to sampling at Occam’s rate.

Among nonlinear methods, compressed sensing and compressive sam-
pling, have generated a lot of attention. This is a discrete time, finite
dimensional set up, with strong results on possible recovery by relaxing
the `0 into `1 optimization, or using greedy algorithms. These methods
have the advantage of unstructured measurement matrices (actually,
typically random ones) and therefore a certain universality, at the cost
of some redundancy. We compare the two approaches, highlighting
differences, similarities, and respective advantages.

We finish by looking at selected applications in practical signal
processing and communication problems. These cover wideband com-
munications, noise removal, distributed sampling, and superresolution
imaging, to name a few. In particular, we describe a recent result on
multichannel sampling with unknown shifts, which leads to an efficient
superresolution imaging method.

M artin Vetterli got his Engineering degree from Eidgenoessische Technische
Hochschule Zuerich (ETHZ), his MS from Stanford University and his
Doctorate from Ecole Polytechnique Fdrale de Lausanne (EPFL).

He was an Associate Professor in EE at Columbia University in New York,
and a Full Professor in EECS at the University of California at Berkeley
before joining the Communication Systems Division of EPFL. He held several
positions at EPFL, including Chair of Communication Systems, and founding
director of the National Center on Mobile Information and Communication
systems He was Vice-President of EPFL, in charge of institutional affairs from
2004 to 2011. He currently is Dean of the Computer and Communication
Sciences School of EPFL.

Joint work with T.Blu (CUHK), Y.Lu (Harvard), D.Gontier (ENSEPFL),
Y.Barbotin, A.Hormati, M.Kolundzija, J.Ranieri, J.Unnikrishnan (EPFL)

He works on signal processing and communications, in particular, sam-
pling, wavelets, multirate signal processing for communications, theory and
applications, image and video compression, joint source-channel coding, self-
organized communication systems and sensor networks and inverse problems
like acoustic tomography. Martin Vetterli has published about 150 journal
papers on the subjects.

His work won him numerous prizes, like best paper awards from EURASIP
in 1984 and of the IEEE Signal Processing Society in 1991, 1996 and 2006,
the Swiss National Latsis Prize in 1996, the SPIE Presidential award in 1999,
and the IEEE Signal Processing Technical Achievement Award in 2001, the
IEEE Signal Processing Society Award in 2010. He is a Fellow of IEEE, of
ACM and EURASIP, and was a member of the Swiss Council on Science and
Technology (2000-2004) and is an ISI highly cited researcher in engineering.

He is the co-author of three textbooks, with J. Kovacevic, ”Wavelets and
Subband Coding” (Prentice-Hall, 1995), with P. Prandoni, Signal Processing
for Communications, (PPUR, 2008) and with J. Kovacevic and V. Goyal, of
the forthcoming book Fourier and Wavelet Signal Processing” (2010).
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Abstract—The purpose of this research is to make the case that random-
ized algorithms provide a powerful tool for constructing approximate ma-
trix factorizations. These techniques are simple and effective, sometimes
remarkably so. Compared with standard deterministic algorithms, the
randomized methods are often faster and—perhaps surprisingly—more
robust. Furthermore, they can produce factorizations that are accurate
to any specified tolerance above machine precision, which allows the user
to trade accuracy for speed if desired. In short, this work describes how
randomized methods interact with classical techniques to yield effective,
modern algorithms supported by detailed theoretical guarantees.

This extended abstract is drawn from the paper [1].

The task of computing a low-rank approximation to a matrix A
can be split into two computational stages. The first is to construct a
low-dimensional subspace that captures the action of the matrix. The
second is to restrict the matrix to the subspace and then compute a
standard factorization (QR, SVD, etc.) of the reduced matrix.

Stage A: Compute an approximate basis for the range of the input
matrix A. In other words, we require a matrix Q for which

Q has orthonormal columns and A ≈ QQ∗A. (1)

Stage B: Given Q that satisfies (1), we use Q to help compute a
standard factorization (QR, SVD, etc.) of A.

The task in Stage A can be executed very efficiently with random
sampling methods, while Stage B can be completed with well-
established deterministic methods.

We focus on one formulation of the problem described in Stage A.
Given a matrix A, a target rank k, and an oversampling parameter
p, we seek a matrix Q with k + p orthonormal columns such that

‖A−QQ∗A‖ ≈ min
rank(X)≤k

‖A−X‖ . (2)

Although there exists a minimizer Q that solves the fixed rank
problem for p = 0, the opportunity to use a small number of
additional columns provides a flexibility that is crucial for the
effectiveness of the computational methods we discuss.

The box labeled “Proto-Algorithm” describes, without computa-
tional details, an approach to solving (2). This simple algorithm is
by no means new. It is essentially the first step of a subspace iteration
with a random initial subspace [2, §7.3.2]. The novelty comes from
the additional observation that the initial subspace should have a
slightly higher dimension than the invariant subspace we are trying
to approximate. With this revision, it is often the case that no further
iteration is required to obtain a high-quality solution to (2). We
believe this idea can be traced to [3], [4], [5].

A principal goal of this research is to provide a detailed analysis of
the performance of the algorithm. This investigation produces precise
error bounds, expressed in terms of the singular values of the input
matrix. Let us offer a taste of these results.

PROTO-ALGORITHM

Given an m× n matrix A, a target rank k, and an oversam-
pling parameter p, this procedure computes an m × (k + p)
matrix Q whose columns are orthonormal and whose range
approximates the range of A.

1 Draw a random n× (k + p) test matrix Ω.
2 Form the matrix product Y = AΩ.
3 Construct a matrix Q whose columns form

an orthonormal basis for the range of Y .

Theorem. Suppose that A is a real m × n matrix. Select a target
rank k ≥ 2 and an oversampling parameter p ≥ 2, where k + p ≤
min{m,n}. Execute the proto-algorithm with a standard Gaussian
test matrix to obtain an m × (k + p) matrix Q with orthonormal
columns. Then

E ‖A−QQ∗A‖ ≤
»
1 +

4
√
k + p

p− 1
·
p

min{m,n}
–
σk+1, (3)

where E denotes expectation with respect to the random test matrix
and σk+1 is the (k + 1)th singular value of A.

The term σk+1 appearing in (3) is the smallest possible error
achievable with any basis matrix Q with k columns. The theorem
asserts that, on average, the algorithm produces a basis whose error
lies within a small polynomial factor of the theoretical minimum.
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Abstract—In a typical formulation for regularized optimization prob-
lems, a weighted regularization term (usually simple and nonsmooth)
is added to the underlying objective, with the purpose of inducing a
particular kind of structure in the solution. The talk discusses several
approaches for minimizing such functions, focusing on the case of large-
scale problems in which the regularizer has a separable structure. The
classic example of a separable regularizer is the `1 norm, which induces
sparsity in the solution vector.

I. INTRODUCTION

One formulation of a regularized version of the optimization
problem minx f(x) (where f : Rn → R) is

f(x) + τc(x), (1)

where c is a convex (usually nonsmooth) function and τ > 0 is
the regularization parameter. The regularizer c is chosen to induce
desired structure in the solution x. For example, the choice c(x) =
‖x‖1 is known to cause sparsity in the solution of (1), while if c
is a total variation norm for an image vector x, adjoining elements
of the solution of (1) tend to have the same values. Besides image
processing, this formulation appears in compressed sensing, LASSO,
regularized logistic regression, among many other applications.

We discuss iterative approaches for solving (1) which have one
feature in common: while forming some sort of approximation to
the underlying objective f , they treat c explicitly. This basic strategy
makes sense because c is often a simple, separable function. We
discuss variants of this approach and their relevance in several classes
of applications.

II. PROX-LINEAR FRAMEWORK

The prox-linear framework uses subproblems in which f is re-
placed by a linear approximation about the current iterate, and a
quadratic term is introduced to penalize long steps:

dk := arg min
d
∇f(xk)T d+ τc(xk + d) +

1

2αk
‖d‖2, (2)

and setting xk+1 = xk + dk. The parameter αk can be manipulated
in the manner of a step length to ensure sufficient decrease at each
iteration, or over a sequence of iterations. The approach has appeared
in the literature repeatedly in various guises; for a description and
analysis motivated by compressed sensing, see [6].

III. VARIATIONS

A block-coordinate variant of (2) is obtained by fixing most
components of d in (2) to be zero, thus reducing the dimension of
the subproblem (2) and requiring evaluation of the gradient ∇f only
for the “active” components of d — those that are allowed to vary
from zero. Provided that the active components are not coupled with
inactive components in the regularizer c, the subproblem generally
remains easy to solve. Convergence can be proved provided that each
component occasionally takes its turn at being active. This approach

is described in [5], [7]. Manifold identification properties can also be
proved for this approach. In the case of c(x) = ‖x‖1, these results
take the form that the nonzero components of xk eventually occur in
the same locations as the nonzeros of the solution x∗ of (1).

Manifold identification properties are particularly relevant for the
next enhancement discussed: reduced Newton methods, in which
second-order information is used to enhance the search direction on
the active manifold. Such an approach was proposed by [4] in the
context of regularized logistic regression, and later analyzed by [7]
in a more general setting. In some contexts, sampling can be used to
obtain an approximate Hessian cheaply; see [1].

Finally, we discuss the regularized dual averaging approach in
which exact gradients ∇f(xk) are replaced by cheap sampled ap-
proximations, possibly based on a random sample of a small subset
of the available data. A subproblem similar to (2) is formulated but
with ∇f(xk) replaced by the average of all gradients encountered
so far and the prox-term penalizing deviation from the initial iterate.
A sublinear convergence rate is proved in [3], [8]. Manifold identi-
fication properties are described in [2], opening the possibility of a
“second-phase” algorithmic strategy in which a different algorithm
is invoked when the active manifold has been identified with some
level of confidence. Computational experience with this strategy on
regularized regression problems will be presented in the talk.
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Abstract—Aiming at low-complexity frame decompositions, we intro-
duce and study the notion of asparse frame, which is a frame whose
elements have a sparse representation in a given orthonormal basis. We
provide an algorithmic construction to compute frames with desired
frame operators, in particular, including tight frames, and prove that
this construction indeed generates optimally sparse frames.

I. I NTRODUCTION

Frames have established themselves as a means to derive redun-
dant, yet stable decompositions of a signal for analysis or transmis-
sion, while also promoting sparse expansions. However, when the
signal dimension is large, the computation of the frame measurements
of a signal typically requires a large number of additions and
multiplications, and this makes a frame decomposition intractable
in applications with limited computing budget.

To tackle this problem, we propose sparsity of a frame as a new
paradigm, thereby reducing the number of required additions and
multiplications when computing frame measurements significantly.

II. SPARSITY: A NEW PARADIGM FOR FRAME CONSTRUCTIONS

A. Sparse Frames

We begin by proclaiming the following definition for a sparse
frame:

Definition 2.1: Let (ej)
n
j=1 be an orthonormal basis forRn, and

let (ϕi)
N
i=1 be a frame forRn. Then(ϕi)

N
i=1 is calledk-sparse with

respect to(ej)
n
j=1, if there exists an×N -matrix C such that

(ϕ1| · · · |ϕN ) = (e1| · · · |en) · C and ‖C‖0 ≤ k. (1)

Notice that in the special case of(ej)
n
j=1 being the standard unit

basis, the sparsity of a frame equals the number of non-zero entries
of its frame vectors.

B. A Notion of Optimality

We next state a notion of optimality, which will typically be
considered within a particular class of frames.

Definition 2.2: Let F be a class of frames forRn, let (ϕi)
N
i=1 ∈

F , and let(ej)
n
j=1 be an orthonormal basis forRn. Then(ϕi)

N
i=1 is

calledoptimally sparse inF with respect to(ej)
n
j=1, if (ϕi)

N
i=1 is k1-

sparse with respect to(ej)
n
j=1 and there does not exist(ψi)

N
i=1 ∈ F

which is k2-sparse with respect to(ej)
n
j=1 with k2 < k1.

The class interesting to us later on isF(N, {λi}
n
i=1), which is the

set of all unit norm frames(ϕi)
N
i=1 in R

n whose frame operator has
eigenvaluesλ1, . . . , λn.

C. A Novel Structural Property of Synthesis Matrices

Aiming for determining the maximally achievable sparsity for
such a classF(N, {λi}

n
i=1), we first need to introduce a particular

measure associated with the set of eigenvalues{λi}
n
i=1. This measure

indicates the maximal number of partial sums which are an integer;
here one maximizes over all reorderings of the eigenvalues.

Definition 2.3: A finite sequence of real valuesλ1, . . . , λn is
ordered blockwise, if for any permutationπ of {1, . . . , n} the set
of partial sums{

∑s

j=1 λj : s = 1, . . . , n} contains at least as many
integers as the set{

∑s

j=1 λπ(j): s = 1, . . . , n}. The maximal block
number of a finite sequence of real valuesλ1, . . . , λn, denoted
by µ(λ1, . . . , λn), is the number of integers in{

∑s

j=1 λσ(j): s =
1, . . . , n}, where σ is a permutation of{1, . . . , n} such that
λσ(1), . . . , λσ(n) is ordered blockwise.

As an example, consider the tight-frame-caseλ = λ1 = . . . = λn,
whose maximal block number isν(λ, . . . , λ) = gcd(λ, n).

III. M AIN RESULT

A. The Spectral Tetris Algorithm

The so-called Spectral Tetris algorithm was first introduced in [3]
as an algorithm to generate unit norm tight frames for any number of
frame vectorsN , say, and for any ambient dimensionn provided that
N

n
≥ 2. An extension to the construction of unit norm frames having

a desired frame operator associated with eigenvaluesλ1, . . . , λn ≥ 2
satisfying

∑n

j=1 λj = N was then introduced and analyzed in [1] –
in fact, an even more general algorithm for the constructionof fusion
frames was stated therein.

Our main theorem provides a lower bound for the achievable spar-
sity for a given number of frame vectors and a given frame operator,
and also shows that this algorithm indeed generates optimally sparse
frames. For stating this result, we will denote the frame constructed
by Spectral Tetris applied to the number of frame vectorsN and the
sequence of eigenvaluesλ1, . . . , λn by STF(N ;λ1, . . . , λn).

Theorem 3.1 ([2]): Let n,N > 0, and let the real values
λ1, . . . , λn ≥ 2 be ordered blockwise and satisfy

∑n

j=1 λj = N .
Then the following hold.

(i) Any frame inF(N, {λi}
n
i=1) has sparsity at leastN + 2(n−

µ(λ1, . . . , λn)) with respect to any orthonormal basis.
(ii) The frame STF(N ;λ1, . . . , λn) is N +2(n−µ(λ1, . . . , λn))-

sparse with respect to the standard unit vector basis, i.e.,it is
optimally sparse.
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I. INTRODUCTION

The last decade has seen a renewed interest in the problem of
estimating the sparsest solution in an underdetermined system of
equations Ax = b, called `0-minimization (`0-min):

(P0) x0 = argmin
x∈Rn

‖x‖0 s.t. Ax = b ∈ Rm, (1)

where A ∈ Rm×n (m << n), and ‖ · ‖0 is the `0-semi-norm or
the counting norm. The problem of computing x0 is known to be
NP-hard in general. However, it was observed empirically that the
solution to (1) can often be obtained by solving the following convex
relaxation, known as `1-minimization (`1-min):

(P1) x1 = argmin
x∈Rn

‖x‖1 s.t. Ax = b. (2)

Recently, compressive sensing theory has investigated the equiv-
alence of the solutions of (P0) and (P1) by characterizing the set
of k-sparse vectors x0 that can be recovered by solving (2) with
b = Ax0 [1], [2]. As pointed out in [3], the numerical verification of
most conditions for equivalence is not computationally tractable. The
work [3] further derived sufficient conditions to verify when all the
possible k-sparse solutions can be recovered by solving (2), with an
emphasis on the numerical feasibility of the verifications. However, it
is well known that given a matrix A, it may be possible to recover
only a subset of all the possible k-sparse solutions [2].

We believe that there is a need to obtain a certificate of optimality
of x1, which answers the question: Is x1 = x0? Specifically, it is
of interest to produce a per-instance certificate of optimality for any
candidate solution obtained at runtime by solving (2), rather than
certificates for all the possible k-sparse solutions.

Contributions. We present a novel primal-dual analysis of (P0).
We propose to use the optimal value of the Lagrangian dual function
of (P0) to obtain a non-trivial lower bound for the sparsity of x0.
Interestingly, maximizing the Lagrangian dual of (P0) is equivalent
to `1-min with additional constraints. Moreover, our analysis can be
applied to other problems which involve minimization of the `0-semi-
norm, such as Sparse PCA, to interpret convex relations of the original
NP-hard problems as maximizing their Lagrangian duals.

II. PRIMAL-DUAL ANALYSIS OF `0-MIN

In this work, we consider the following modified `0-min problem:

(P ∗0 ) x∗0 = argmin
x∈Rn

‖x‖0 s.t. Ax = b and ‖x‖∞ ≤M, (3)

and its Lagrangian dual:

(D∗0)

{δ∗1 , δ∗2} = arg max
{δ1∈Rn,δ2∈Rn}

[
1>min {0,1− δ1}+ δ>2 b

]
,

s.t. − 1

M
δ1 ≤ A>δ2 ≤

1

M
δ1 and δ1 ≥ 0.

(4)

Notice that if (P0) has a unique solution x0, we can choose any
finite positive valued M ≥ ‖x0‖∞ to ensure that x∗0 = x0. If (P0)

does not have a unique solution, we may still choose a finite valued
M > 0 to regularize the desired solution. The constraint M ≥ ‖x∗0‖∞
is also referred to as the box constraint.

Our main result gives a biduality relation between (P ∗0 ) and the
following `1-min problem with the box constraint:

(P ∗1 ) x∗1 = argmin
x∈Rn

1

M
‖x‖1 s.t. Ax = b and ‖x‖∞ ≤M, (5)

where it must be noted that x∗1 is not necessarily equal to x1.

Theorem 1. (P ∗1 ) is the Lagrangian dual of (D∗0), i.e., it is the
Lagrangian bidual (dual of the dual) of (P ∗0 ).

It must be noted that the duality gaps of (P ∗0 ) and (P ∗1 ) with
respect to their dual (D∗0) are non-zero and zero, respectively.

Corollary 1. Since solving (P ∗1 ) is equivalent to maximizing the
Lagrangian dual function in (D∗0), we have 1

M
‖x∗1‖1 ≤ ‖x∗0‖0.

Corollary 2. Let M0 = ‖x0‖∞, M1 = ‖x1‖∞ and let M be the
constant used in (5). We then have (a) solving (P ∗1 ) with any M that
satisfies M ≥ max{M1,M0} is equivalent to solving (P1), and (b)
if M1 < M0, we cannot recover x∗0 by solving (5) with M = M0.

III. SIMULATION RESULTS

We randomly generate entries of A ∈ R128×256 and x0 ∈ R256

from a Gaussian distribution with unit variance. The sparsity of x0 is
varied from 1 to 64. We solve (P ∗1 ) with M = M0, 5M0 and 10M0

to obtain upper and lower bounds for ‖x0‖0, as ‖x∗1‖0 and 1
M
‖x∗1‖1,

respectively. Figure 1 shows the results of our simulations.
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Fig. 1. x-axis: ‖x0‖0 - sparsity of x0. y-axis: mean values (over 100 trials)
of the upper bound (red dashed line), lower bound (blue dotted line) and true
value (black solid line) for ‖x0‖0.

Our lower bounds are tight for extremely sparse x0 and are more
conservative as the number of non-zero entries in x0 increases. These
bounds are tighter when the value of M is closer to M0. Furthermore,
we observed in our simulations that with the same notation as in
Corollary 2, if M1 ≥M , then in some cases, we can recover x∗0 by
solving (P ∗1 ) with M = M0, but not by solving (P1).
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Compressed sensing or compressive sensing (CS) is a new protocol
to sample signals at a rate proportional to their information content
rather than their bandwidth[1], [2], [3], [4]. In a discrete setting,
let χN (K) = {x ∈ RN : ‖x‖0 ≤ K} denote the family of
at most K-sparse vectors in RN , where ‖x‖0 counts the number
of nonzero entries of x. The basic theory of CS asserts that one
can recover a K-sparse signal x ∈ χN (K) from relatively few
incomplete measurements y = Φx ∈ RM for a carefully chosen
sampling matrix Φ by solving the `1-minimization problem

min
x∈RN

‖x‖1 subject to y = Φx (1)

where ‖x‖1 denotes the `1-norm of x. The celebrated works by
Candès, et al.[1], [2], [3] and Cai, et al.[5] have shown that if the
sampling matrix Φ satisfies the restricted isometry property (RIP)
with some order, then solving the convex optimization (1) can recover
an arbitrary K-sparse signal x exactly.

There is another strategy which recovers sparse signal by solving
the `p(0 < p < 1) minimization[6], [7]

min
x∈RN

‖x‖p subject to y = Φx (2)

where ‖x‖p = (
PN

i=1 |xi|p)1/p is the standard `p quasi-norm of
vector x. Furthermore, we can recover the sparse signal by solving

min
x∈RN

‖x‖p subject to ‖y − Φx‖2 ≤ ε (3)

in the noisy case, where ε represents the noise level.
In this paper, we focus on sparse signal recovery via the `p

minimization, along with the analysis of its performance using RIP.
Theorem 1 Let x ∈ χN (K) be a K-sparse signal, and y = Φx

be the linear measurement vector. Let K1 be a positive integer and

η =
K1/p−1/2

K
1/p−1/2
1

+

r

K1

K
> 0

Then under the condition

δK + ηθK,K1 < 1 (4)

solving the `p minimization problem (2) with 0 < p < 1 can recover
x exactly. In particular, the condition (4) becomes δ2K < 1/2 as
p → 0.

Theorem 2 Let x ∈ χN (K) be a K-sparse signal, and y = Φx+e
be the linear measurement vector with ‖e‖2 ≤ ε. Let K1 be positive
integer and

η =
K1/p−1/2

K
1/p−1/2
1

+

r

K1

K
> 0

Then under the condition

δK + ηθK,K1 < 1 (5)

solving the `p minimization problem (3) with 0 < p < 1 recovers
x∗ satisfying

‖x∗ − x‖2 ≤
2
√

2
√

1 + δK

1− δK − ηθK,K1

ε

Theorem 3 Let x ∈ RN be an arbitrary signal, and y = Φx + e
be the linear measurement vector with ‖e‖2 ≤ ε. Let K1 be positive
integer and

η =
K1/p−1/2

K
1/p−1/2
1

+

r

K1

K
> 0

Then under the condition

δK + ηθK,K1 < 1 (6)

solving the `p minimization problem (3) with 0 < p < 1 recovers
x∗ satisfying

‖x∗ − x‖2 ≤
2
√

2
√

1 + δK

1− δK − ηθK,K1

ε

+
2
√

2θK,K1‖x− xK‖p

K
1/p−1/2
1 (1− δK − ηθK,K1)

(7)

where xK is the best K-term approximant of x.
According to theorems 1-3, our results show that the `p minimiza-

tion can recover sparse signal with good performance provided that
the sampling matrix Φ satisfies the RIP with parameter δ2K < 1/2.

In a recent paper, Davies and Gribonval constructe examples shown
that if δ2K ≥ 1/

√
2, exact recovery of certain K-sparse signal using

(1) or (2) can fail in the noiseless case[8]. Blanchard, Cartis and
Tanner also discuss the sharpness of the RIC bounds in compressed
sensing[9]. We can see that there still has a room for improvement.
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I. I NTRODUCTION

The detection of moving vehicles on land surface using airborne or
spaceborne radar systems (ground moving target indication, GMTI)
is an important topic for military as well as civil applications. This
task is often combined with imaging the area via synthetic aperture
radar (SAR) [1]. It is desirable to execute this radar operation mode
concurrently with other radar observation assignments.

During the last years sparsity and compressed sensing (CS) has
come into focus of the radar community, cf. e.g. [2] or [3]. Sparsity
principles and CS have also been applied to GMTI problems (cf. [4]),
mostly for reconstruction of covariance matrices (cf. [5])in classical
GMTI. Here we apply CS directly for jointly imaging moving and non
moving targets. This method indicates the velocity of each scatterer
– i.e. of each non zero element of the scenery. The multichannel data
are measured in the classical stripmap geometry.

II. M EASUREMENT AND DATA STRUCTURE

The principles of airborne multichannel stripmap radar areas
follows: Pulses are transmitted from equidistant positions on a linear
flightpath and waves scattered back from earth are received via n

antennas – arranged in direction of flight with distances much higher
than the distance the platform covers between two pulses – measuring
amplitude, phase and delay time. Due to the finite width of the
footprint, every target is illuminated by several pulses.

In consequence – after some preprocessing – a single non moving
scatterer at(0, ρ) in an otherwise empty scenery generates in pulsep

and channelj a signal that is non zero in distancer =
√

ρ2 + x2
p,j ,

only. Herexp,j indicates the position of thejth receiving channel at
pulsep, representable viaxp,j = cp + cj with constantsc and cj

depending on the recording setup. The phase of the received signal is
proportional to the distancer, so it is in first approximation a chirp.
Altogether we obtain a complex signal following approximately

s(j, r, p) = aδ
(

r −
√

ρ2 + (cp − cj)2
)

Dr,p,je
(−i4π/λ(cp−cj)

2/ρ)

with amplitudea ∈ C, D ∈ R
+ indicating the transmitted energy in

direction of the scatterer and wavelengthλ, δ denotes the Kronecker
delta. The signal of a moving scatterer differs in shape and phase.

The combination between the multichannel pointwise measure-
ments in r and p and chirp like responses of the scatterers is
suitable for applying CS, since the coherence between chirps and
point basis is low. So we define the measurement matrixΦ by
shifted versions ofs and its analogons in different velocities. We
considered here discretization claims (cf. e.g. [6]) as e.g. the gap
between two velocities as well as the distance between two imaging
points. Additionally we representedΦ by a linear operator suitable
for fast computational methods, necessary due to the high amount
of data. To hold the restricted isometry property for a number of
scatterers as high as possible, we intended to treat the non moving
ones after merging by wavelet transform. Alternatively we suppress
them by subtracting channels, shifted according to the differentcj .
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Fig. 1. Upper: Reconstruction of moving targets with velocity and amplitude
coding. Lower: CS-SAR image of a wider scenery.

III. N UMERICAL RESULTS WITH REAL RADAR DATA

Our numerical results are obtained by solving the noisy basis
pursuit problem{min ‖x‖1 such that‖y − Φx‖2 < σ} – with the
datay, reconstructionx and σ estimated from the known signal to
noise ratio – using the SPGL1 algorithm (cf. [7]). The data have
been recorded by a 4 channel airborne device, imaging a scenery
with several vehicles driving with approximately the same velocity.
Experimental results are depicted in Figure 1. The lower oneis
computed using a pointwise representation for all scatterers without
considering their velocities, the scenery is clearly recognizable like
in a classical SAR image. In the upper one the detail marked below
is considered by suppressing the non moving scatterers as described
above. Here direction and velocity of moving scatterers is coded in
color, so the convoy is clearly imaged and detectable. This result
holds also for regarding a fraction of the data or for simulated data.
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I. INTRODUCTION

In a variety of synthetic aperture radar (SAR) applications only
partial data are available. The conventional SAR imaging approaches
lead to severe artifacts which dramatically degrade the image quality,
making further processing such as target detection and classification
difficult. Considering the fact that image reconstruction from incom-
plete data can be viewed as an underdetermined inverse problem,
we here apply compressed sensing (CS) related techniques to realize
automatic target recognition (ATR) from partial SAR data, with or
without image reconstruction. The impact of various subsampling
patterns on ATR performance is also investigated.

II. CS FOR SAR

SAR images cannot be accurately recovered by CS approaches
because of the speckle noise, which endows the images with a
high entropy. However, SAR images have a very high dynamic
range in many situations due to the presence of a few very bright
objects, which typically are associated to man-made structures. Such
objects generally occupy a small fraction of the image and their
corresponding pixels have much larger magnitudes than the back-
ground pixels. The facts that a) SAR data are samples of the spatial
Fourier transform of the reflectivity field, b) the bright objects are
sparse in the image domain, and c) background pixels have much
lower magnitudes suggest that the bright objects can be effectively
reconstructed from partial data by using CS approaches.

III. ATR FROM INCOMPLETE SAR DATA

A. With image formation:

The test image is first reconstructed from partial SAR data by
solving a constrained `1 norm minimization problem. Then, the
mean-squared error (MSE) classifier is utilized for ATR [1]. The MSE
classifier is a nearest neighbor classifier, and it compares normalized
images in magnitude. This is because variations in intensity may
occur for different SAR acquisition geometries. Also, before normal-
izing the images we set to zero all but the largest Nb pixels. This
is because typically the brightest pixels are located within the target
part, and the darker pixels constitute the clutter and target shadow.

B. Without image formation:

The smashed-filter (SF) classifier for compressive classification [2]
is adopted, which operates directly on observed data. It is similar
to the MSE classifier except it compares in the data domain. Note
that the comparison is made between the observed data and data
corresponding to normalized complex-valued reference images since
there is no test image reconstruction.

IV. SIMULATIONS

Images of three types of targets from the MSTAR database are
used in simulations, and two independent sets of images at different
elevation angles are adopted as the test and reference images. Three
patterns subsampling SAR data along the aperture are considered
because of their various applications and simple implementation
for existing hardware. As shown in Fig. 1, the patterns are: a)

(a) 1Drand (b) long gap (c) jittered

Fig. 1. Sample subsampling patterns with 25% SAR data.

1Drand (subsampling uniformly at random), b) long gap (randomly
subsampling with the long average gap length constraint), and c)
jittered (similar to periodically subsampling but the locations and
lengths of gaps are slightly jittered). The CS reconstructed images
are generated by using the SPGL1 algorithm. For comparison, the
test images are also recovered by applying the conventional polar
format algorithm (PFA), assuming that all the missing data are zeros.
The ATR performance of different scenarios presented in Table I is
evaluated by the probability of correct classification Prcc.

V. DISCUSSION

Compared with conventional SAR imaging methods, CS recon-
structed images lead to significantly improved ATR performance
since the dominant scatterers can be efficiently recovered. High
recognition rates can even be achieved when only a small percentage
of data are available. The SF classifier is feasible in theory, but
its application in practice is difficult because it can only compare
the distances between complex-valued SAR images. This makes it
sensitive to the phases of images, which vary too much with even
a small change in the observation angle or distance. Although the
similarity between the MSE and SF classifier is discussed in [2], the
MSE classifier performs much better here because it can compare
images in magnitude. The jittered subsampling pattern performs the
worst, and a likely explanation is that its similarity to the periodic
sampling results in stronger aliasing effect.

TABLE I
ATR PERFORMANCE OF DIFFERENT SCENARIOS (Prcc)

data amount subsampling pattern MSE (Nb = 300) SF
CS PFA

25% data
1Drand 93.9% 84.7% 53.2%

long gap 90.0% 68.3% 50.5%
jittered 83.8% 54.1% 49.9%

10% data
1Drand 76.4% 55.1% 48.6%

long gap 75.8% 50.2% 46.6%
jittered 58.3% 40.7% 45.5%
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A conventional spaceborne or airborne Synthetic Aperture Radar
(SAR) maps the three-dimensional (3-D) reflectivity distribution of a
scene to be imaged into the 2-D azimuth-range (x − r) plane. This
can be seen as a projection along the third radar coordinate, elevation
(s). x, r, and s form an orthogonal coordinate system specific to the
particular SAR imaging geometry. This projection particularly handi-
caps the interpretation of SAR images of 1) volumetric scatterers and
2) of urban areas and man-made objects, i.e. objects with constructive
elements oriented at steeper angles than the local incidence angle.

SAR tomography (TomoSAR) extends the synthetic aperture prin-
ciple of SAR into the elevation direction for 3-D imaging [1]. It uses
acquisitions from slightly different viewing angles to reconstruct for
every azimuth-range (x− r) pixel the reflectivity function along the
elevation direction s. It is essentially a spectral analysis problem.
Differential SAR tomography (D-TomoSAR) [2], also referred to
as 4-D focusing, obtains a 4-D (space-time) map of scatterers by
estimating both the elevation and the motion parameters of multiple
scatterers inside an azimuth-range pixel.

Modern SAR sensors, e.g. the German TerraSAR-X satellite,
provide a very high spatial resolution (VHR) of up to 1 m. This
resolution is particularly helpful when it comes to interferometric and
tomographic imaging of buildings and urban infrastructure. Although
the azimuth-range resolution of this class of very high resolution data
reaches sub-meter values, the tight orbit control of modern sensors
limits the elevation aperture size and, hence, leads to a low tomo-
graphic elevation resolution of typically 30 m, i.e. 10-50 times less
than that in azimuth or range. This very unsatisfactorily anisotropic
resolution element calls for robust super-resolution (SR) TomoSAR
algorithms and it also renders the signal sparse in elevation, i.e.
only a few point-like reflections are expected per azimuth-range cell.
In order to maintain the original resolution for urban infrastructure
imaging, these algorithms should not require averaging in azimuth
and range.

Considering the sparsity of the signal in elevation, the compressive
sensing (CS) [3] [4] approach to TomoSAR was outlined in [5]
where the SR capability of tomographic SAR inversion via L1 norm
regularization and its robustness on elevation estimation against phase
noise have been proven using TS-X high resolution spotlight data.

As described in [3], L1 norm minimization gives the sparsest solu-
tion if (and only if) our sparse mapping matrix fulfills the Restricted
Isometry Property (RIP) and incoherence properties. However, for our
application TomoSAR, RIP and incoherence are violated for several
reasons. First the mapping matrix R is pre-determined by the mea-
surement system (the elevation aperture sampling pattern) and may
not be optimum. Second, the reflectivity profile to be reconstructed
is often sampled much more densely than the elevation resolution
unit in order to allow for good resolution and scatterer positioning
accuracy. The small sampling distance renders R over-complete,
reduces RIP and increases coherence. This fact may introduce outliers

in the estimates. In addition, as detailed in [6], the L1 approximation
introduces systematic amplitude biases. Those artifacts are not critical
when the aim is only to reconstruct a reasonable reflectivity profile.
However, high-quality sparse tomographic SAR inversion requires
the estimation of the number of scatterers, as well as the amplitude,
phase, and elevation of each scatterer. Hence, special care must be
taken of these nuisance artifacts.

In this paper, we proposed a compressive sensing (CS) based
"Scale-down by L1 norm Minimization, Model selection, and
Estimation Reconstruction" (SL1MMER, pronounced "slimmer") al-
gorithm to to improve the CS estimator and correct for these two
deficiencies. SL1MMER combines the advantage of compressive
sensing sparse reconstruction (e.g. SR properties and high point
localization accuracy) and amplitude and phase estimation accuracy
of linear estimation, and hence gives reliable estimation of the number
of scatterers, elevation, motion parameters, amplitude and phase of
each scatterer. Furthermore, a practical demonstration of the super-
resolution of SL1MMER for SAR tomographic reconstruction is
provided with a tremendously increased proportion of detected double
scatterers from 20% of the conventional linear estimator to 38%.

A systematic performance assessment of the proposed SL1MMER
algorithm will be presented in the final paper regarding the ele-
vation estimation accuracy, super-resolution power and robustness.
Compared to the Cramér-Rao lower bound, both numeric results
and an analytic approximation of the elevation estimation accuracy
are provided. It is shown that SL1MMER is an efficient estimator.
The SR factors are found by extensive simulations. These establish
fundamental bounds for super-resolution of spectral estimators. The
achievable SR factors of SL1MMER in the typical parameter range
of tomographic SAR are found to be promising and are in the order
1.5∼25. The minimal number of acquisitions required for a robust
estimation are derived and given by explicit formulas.
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I. INTRODUCTION

Cone Beam Computerized Tomography (CBCT) and Positron
Emission Tomography (PET) Scans are medical imaging devices
that respectively provide anatomical and metabolic complementary
information on the patient. X-ray absorption is an intrinsic physical
property of biological tissues, but the dose delivery necessary to get
an image can theoretically be lowered by improving the detection
efficiency of the scanner. Similarly, the dose of active radiotracer
injected to the patient before a PET-Scan as well as the duration of
the exam have to be lowered. The models considered come directly
from the physics of the new generation acquisition devices, and take
into account the specificity of the (Poisson) noise.

For the CBCT modality, we denote by µ ∈ RI1 the unknown
attenuation vector indexed by i ∈ {1, · · · , I1} and y ∈ RJ1 the
measurements indexed by j ∈ {1, · · · , J1} (J1 << I1). More
precisely, if the CBCT camera contains M pixels, a tomographic set
of measurements y is obtained with Θ angles of projection so that
J1 = MΘ. For a monochromatic beam of X-ray, the Beer-Lambert
law provides the following acquisition model in a discrete setting :
yj ∼ P(zj exp (− [Aµ]j)), where P(λ) is a Poisson distribution
with parameter λ and zj stands for the number of photons emitted
by the source within the solid angle relative to the pixel j. The linear
operator A, called the system matrix, is a numerical implementation
of the operators of projection that fully describes the geometry of the
acquisition system. The coefficient ai,j of A typically characterizes
the probability that any event occurring on a photon in pixel i will be
detected on pixel j. We model the measurements as independently
distributed pure Poisson random variables since new generation
photon-counting detectors are not affected by dark noise classically
modeled by additive Gaussian noise.

We model the data acquisition of PET-Scan in a similar way so that
wj ∼ P([Bv]j), where v ∈ RI2 denotes the concentration activity
vector to reconstruct, w ∈ RJ2 the vector of measurements and B
the system matrix which describes the full properties of the PET-Scan
(J2 << I2). Since the Poisson likelihood reads: P (Y = y|X = x) =
xy

y!
exp (−x), the negative log-likelihood L for each modality is:

LCT (µ) =

J1X
j=1

n
yj [Aµ]j + zj exp

“
− [Aµ]j

”o
(1)

LPET (v) =

J2X
j=1

n
[Bv]j − wj logε([Bv]j)

o
(2)

with the notation: logε(x) = log(x + ε). Since these problems are
ill-posed, we add a regularization term J to the data fidelity term L

and we consider the following problems:

µ̂ = arg min
µ≥0

LCT (µ) + J(µ) (3)

v̂ = arg min
v≥0

LPET (v) + J(v) (4)

II. ALGORITHMS AND RESULTS

We propose various fast numerical schemes to compute the solu-
tion, depending on the regularization choice. Regularizations based
on Total Variation norm and sparsity-inducing `1-norm on a tight
frame (wavelets, curvelets, etc.) have been investigated. In particular,
we show that a new algorithm recently introduced by A. Chambolle
and T. Pock is well suited in the PET case when considering non
differentiable regularizations. Numerical experiments on simulations
and real data for several level of X-ray dose (for CBCT) and radio-
tracer dose (for PET) indicate that the proposed algorithms compare
favorably with respect to well-established methods in tomography.
First results are displayed on Figure 1.

Fig. 1. CBCT (top row) : ground truth (left), reconstruction for 1000 photon
counts with a TV reg. (accelerated Forward-Backward splitting) (middle),
state-of-the-art (right). TEP (bottom row) : ground truth (left), reconstruction
pour 200000 gamma counts with a TV reg. (Chambolle-Pock algo.) (middle),
state-of-the-art (right). REFERENCES

[1] Z. Harmany, R. Marcia, and R. Willett, “This is SPIRAL-TAP:
Sparse poisson intensity reconstruction algorithms theory and practice,”
arXiv:1005.4274, 2010.

[2] P.L. Combettes and V. Wajs, “Signal recovery by proximal forward-
backward splitting,” SIAM J. on Multi. Model. and Simu., vol. 4, no. 4,
2005.

[3] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” JMIV, to appear.

[4] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Com.
P. & A. Math, vol. 57, 2004.

[5] A. Beck and M. Teboulle, “Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems,” IEEE
TIP, vol. 18(11), 2009.

25



Reliable Small-object Reconstruction from Sparse Views in
X-ray Computed Tomography
Jakob H. Jørgensen∗, Emil Y. Sidky† and Xiaochuan Pan†

∗Department of Informatics and Mathematical Modeling, Technical University of Denmark,
Richard Petersens Plads, Building 321, 2800 Kongens Lyngby, Denmark. Email: jakj@imm.dtu.dk

†Department of Radiology, University of Chicago, 5841 S. Maryland Ave., Chicago IL, 60637. Email: {sidky,xpan}@uchicago.edu

I. BACKGROUND

Techniques based on Compressive Sensing (CS) are being de-
veloped for application in Magnetic Resonance Imaging (MRI) and
X-ray Computed Tomography (CT) [1]. CS-inspired Total Variation
(TV)-minimization algorithms have been demonstrated to produce
accurate CT images from less data than required by standard Filtered
Back Projection [2], [3], by exploiting approximate sparsity in the
gradient of cross sections of the human body. The amount of data in
CT, i.e., the number of measurements, is intrinsically tied to the X-ray
dose delivered to the patient. As even a single diagnostic CT scan can
lead to significantly increased risk of radiation-induced cancer [4], it
is clear that a major reason to pursue CS-inpired CT algorithms is
the potential for low-dose X-ray imaging.

One practical consideration for medical imaging based on CS is
the extremely large system models involved; in CT, for example,
image arrays with 109 voxels are standard. Such large systems are
challenging to solve accurately in acceptable time. Complicating this
issue is the fact that clinically relevant features are often very small
– occupying only a few voxels. As result both global and pointwise
convergence of algorithms solving CS-based optimization problems
may have clinical impact. To demonstrate this issue we examine a
realistic simulation of CT for breast cancer screening.

II. THE PRESENT STUDY

Breast CT imaging is being considered as a replacement for
mammography in screening for early-stage diagnosing of breast
cancer. One particular indicator of breast cancer is formation of
microcalcifications – very small, highly attenuating calcium deposits.
For screening, low-dose imaging is pertinent to minimize accumu-
lated X-ray dose, while accurate and reliable microcalcification shape
and attenuation reconstruction is crucial for precise diagnosing.

We consider nonnegativity-constrained TV-regularized image re-
construction in order to exploit gradient sparsity to compensate for the
few-view projection data. We investigate in simulation studies, both
using ideal data from a discrete model and more realistic data from
a continuous model, as well as real CT scanner data, requirements
on the number of views, noise level and choice of regularization
parameter for accurate reconstruction of small objects.

One concern, in particular for small objects, is that TV-
minimization is contrast reducing [5], but this can to some extent
be controlled by choice of regularization parameter.

Another practical concern, that we address in the study, is the
choice of stopping rule in the minimization algorithm. Two com-
monly used stopping rules consist of requring sufficiently low data
residual norm or norm difference between succesive iterates, but
as we demonstrate, these choices can be unreliable for ensuring
sufficiently accurate reconstructions. On the other hand rigorous opti-
mization theory-based stopping criteria, such as the KKT conditions,
may lead to impractical running times for real data, where dimensions
of the CT system matrix of 109 × 109 are not uncommon.

Fig. 1. Profiles through single microcalcification for reconstructions increas-
ingly close to satisfying optimality condition cosα = −1. Inset: 1502 pixel
region of interest of full 20482 pixel reconstruction for cosα = −0.999998.

We compare the use of different stopping rules for small object
reconstruction, including KKT conditions, the gradient map criterion
[6] and the cosine alpha criterion suggested for constrained TV-
minimization in CT [3]. As an example we consider a 20482 pixel
reconstruction of a breast phantom with five small microcalcifications
from 64-view data with a 1024-bin detector subject to a realistic noise
level. We show four reconstructions increasingly close to satisfying
the optimality condition cos α = −1 from [3], where α is the angle
between the TV-gradient and the data residual gradient.

We observe a non-uniform convergence across the image, in the
sense that although a given iteration may be accurate in most of the
image, some features, in particular small objects, may not be. Such
inadequate reconstructions can have significant clinical implications,
and we discuss strategies to ensure reliable reconstruction.
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I. INTRODUCTION

Magnetic resonance imaging (MRI) raw data is acquired as a set
of lines in the Fourier domain (aka k-space), typically lines covering
all kx locations for a discrete set of ky locations. For dynamic MRI,
several time frames are recorded to form a movie. Since each line
is sampled at the Nyquist rate in the x direction, the dynamic MRI
reconstruction can be performed slice by slice for each x location
independently. Optimal undersampling strategies for dynamic MRI
are generally based on tiling of the signal support in the 2D Fourier
domain (y, f), where f is the frequency with respect to time (t) [1],
[2]. This is the 2D equivalent of the standard 1D sampling theory. The
achievable acceleration, compared to Nyquist sampling of each time
frame, is limited by how packable the (y, f) support is with respect
to tiling. We here consider a hybrid strategy in which the support is
split into two parts that are individually much more packable than
the full support. This allows us to reach higher acceleration factors.
Compressed sensing (CS) related ideas are then used to detect the
support and reconstruct the full signal.

II. PHASE CONTRAST CAROTID BLOOD FLOW MRI

Measurement of carotid blood flow can be achieved via MRI
using a technique referred to as “velocity encoding”. This involves
acquiring two sets of time frames, applying velocty encoding on one
and using the other one as a reference. The velocity information
can then be obtained as the phase difference between the two sets
of frames. For a typical (y, t) slice at a given x going through the
right common carotid artery (RCCA), the signal support in the (y, f)
domain can be modelled as a cross (see Fig. 1). The support can be
viewed as the combination of a static part with only DC frequency
content and a dynamic part that is localized in a small region of
interest (ROI) corresponding to the RCCA. Importantly, the location
of the dynamic ROI is not known a priori.

III. SPLIT SUPPORT UNDERSAMPLING STRATEGY

We consider a sampling strategy composed of two sampling
patterns as shown in Fig. 2. Pattern (a) is adapted to the dynamic
part of the support. Assuming the width of the band is B pixels, B
parallel lines allow the reconstruction of the dynamic part, provided
its location can be detected. Pattern (a) is a multi-coset sampling
pattern containing two such sets of parallel lines, which guarantees
the detection [3]. Pattern (b) is adapted to the static part. Each ky

location is sampled once, which results in standard Nyquist sampling
of that part.

IV. DETECTION OF THE DYNAMIC PART AND SIGNAL

RECONSTRUCTION

Assuming an upper bound B on the size of the dynamic ROI is
known, the detection of the ROI can be achieved by an exhaustive
search strategy assuming the ROI support is made of one block of
pixels. If the image has N lines, only N − B + 1 supports need to

x

y

f (Fourier domain of t)

y

Fig. 1. Left: Carotid slice with the
RCCA marked in yellow. An x slice going
through the RCCA is marked in blue.
Right: signal support model: static signal
(dark gray) and dynamic ROI (light gray).
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Fig. 2. Sampling patterns
(5× acceleration). (a) pattern
adapted to the dynamic part.
(b) pattern adapted to the static
part.
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(b) Fig. 3. Velocity estimation
(Wiener deconvolution) (red) and
reference (blue) for two repre-
sentative voxels. (a) voxel in the
center of the RCCA. (b) voxel
close to the artery wall.

be tested which is not untractable. Once the dynamic ROI has been
detected, the full static and dynamic (y, f) signal support is known
and the full signal can be reconstructed by fitting a signal with that
(y, f) support to the measurements from patterns (a) and (b) in the
least squares sense. Also a Wiener deconvolution type of solution can
be obtained assuming slightly more a priori knowledge on the (y, f)
signal and the measurement noise.

The proposed methodology has been simulated by undersampling
data from fully sampled acquisitions. Typical performance for two
representative voxels is shown in Fig. 3. The accuracy of the
estimation is limited by the noise in the data but the general behaviour
is well-preserved.

V. POSSIBLE EXTENSIONS

Two simple extensions can be considered. First it is possible to
detect and reconstruct multiple dynamic ROIs using more sets of
parallel lines in pattern (a) [3]. Second, a low-pass support can
be considered instead of the static support. This would allow the
application to situations where the MRI signal has one (or several)
main dynamic ROI and some less dynamic content otherwise, but not
necessarily static.
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Abstract—In this paper, we derive an algorithm to denoise a signal
generated via its synthesis coefficients on a redundant time-frequency
dictionary, the coefficients following a multivariate mixture of Gaussians
models. The crux of the problem is that correlations reside both in the
model of the coefficients and naturally in the dictionary. We propose and
prove the convergence of a “Majorization-Minimization” algorithm to
solve this problem. We also advise a particular structure for the dictionary
and covariance of the noise that allow to solve efficiently the matrix
inversions needed in the algorithm.

I. INTRODUCTION

Signal denoising algorithm based on redundant decompositions
over a dictionary usually assume that the coefficients are decorrelated.
Although this yield interesting results, this hypothesis may not always
be realistic, e.g. for signals propagating in a complex environment.
With applications to the analysis of neurophysiological and BCI
signals in mind, we tackle the denoising problem when the synthesis
coefficients are modeled as multivariate mixture (which would model
different brain states).

We propose a denoising algorithm in the case of mixture of
correlated Gaussians when the covariances are known and show its
convergence. Furthermore, we argue its efficiency when the dictionary
has some translation-invariance properties which we define.

II. THE PROBLEM

In RR, consider a dictionary represented by its matrix Φ ∈ RR×T
(with T ≥ R ) and observations of the form

s = Φy + b (1)

where b ∈ RR is a zero-mean Gaussian noise with covariance Σ0,
and y ∈ RT is a random vector whose distribution is a multivariate
zero-mean Gaussian mixture. We denote by Σ1, . . . ,ΣK ∈ RT×T
the covariance matrices and p1, . . . , pK the mixing parameters so
that the density of y can be written :

p(y) =

K∑
k=1

pk × ((2π)T det Σk)−
1
2 exp

(
−1

2
y∗Σ−1

k y

)
. (2)

The maximisation of the log-likelihood associated with this model
and an observed signal s leads to the optimization problem

ŷ = arg min
y∈RT

1
2

(s−Φy)∗Σ−1
0 (s−Φy)− log p(y) = arg min

y∈RT

L(y),

(3)
to be numerically solved. The correlations between synthesis coeffi-
cients prevents us from using usual approaches to do so.

III. ESTIMATION

In order to address Problem (3), we introduce an “MM” approach
(for Majorization-Minimization, see for example [2]) which relies
on minimizing a majorizer of L.

Let us set C(y) = − log(p(y)) , and A = 1
2

∑K
k=1 pkΣ−1

k . Using
Jensen’s inequality, one can find a quadratic function Qt majorizing
the negative-log-likelihood L and being tangent to L at the current
estimation point yt. Its minimum can be analytically found and
general theorems on MM algorithms [3] lead to:

Proposition 1: Denote M =
(
Φ∗Σ−1

0 Φ + 2(A+ λIT )
)

and Vt =
∇C(yt)− 2(A+ λIT )yt. The iteration

yt 7−→ yt+1 = M−1
(

ΦTΣ−1
0 s− Vt

)
(4)

converges to the minimum of L.
Let us note that this update requires the inversion of the matrix

M ∈ RT×T , where T can be large. Simplifying hypotheses can help
alleviate this problem in real situations.

IV. TRANSLATION-INVARIANT DICTIONARIES

To invert M efficiently even when L and T are large, we consider
cases where the structure of A, Σ0 and Φ renders M block circulant.
This is in particular the case when 1) Σ0 is circulant; 2) A is
block-diagonal with identical Hermitian blocks and 3) we use doubly
indexed dictionaries that are translation-invariant in the sense:

Definition 1: A dictionary Φ is invariant by (circular) translations
if the columns of Φ verify

φλ[k] = φm,n[k] = φ0,n[k−m] , m = 0, . . .M−1, n = 0, . . . N−1.

Note that in this case the Gram matrix of the dictionary is block-
circulant (i.e. (Φ∗Φ)λλ′ = 〈φm,n, φm′,n′〉 = 〈φm−m′,n, φ0,n′〉).
Examples of such dictionaries are: translation-invariant wavelet
frames, real Gabor dictionaries that may be translation invariant in
time or in frequency. M being block-circulant, it may be diagonalized
using the Fourier transform [1], yielding M = F∗PF with P
invertible block-diagonal and F being the Kronecker product of the
standard Fourier transform and the identity. Eq. (4) is then solved via

Pz = xt , where z = Fy and xt = F

(
1

σ2
0

Φ∗s− Vt
)
. (5)

V. CONCLUSIONS

This paper shows that denoising signals on a redundant dictionary
taking into account both the correlation of the coefficients and that of
the noise is possible when the structure of the dictionary and noise
are compatible. Here the considered model is a mixture of correlated
Gaussians but this work may be extended to other similar models.
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Abstract—We develop a randomized block-coordinate descent method
for minimizing the sum of a smooth and a simple nonsmooth block-
separable convex function and prove that it obtains an ε-accurate solution
with probability at least 1−ρ in at most O((2n/ε) log(1/ερ)) iterations,
where n is the dimension of the problem. This extends recent results of
Nesterov [2], which cover the smooth case, to composite minimization,
and improves the complexity by a factor of 4. In the smooth case we give
a much simplified analysis. Finally, we demonstrate numerically that the
algorithm is able to solve various `1-regularized optimization problems
with a billion variables.

I. INTRODUCTION

We consider the unconstrained convex optimization problem

min
x∈RN

F (x)
def
= f(x) + Ψ(x), (1)

where f is smooth and Ψ is block-separable. By x∗ we denote an
arbitrary optimal solution of (1) and by F ∗ the optimal value.

A. Block structure

Let (U1, . . . ,Un) be a block decomposition of (a column per-
mutation of) the N × N identity matrix, with Ui ∈ RN×Ni

and
∑n
i=1Ni = N . Any x ∈ RN can then be represented

as x =
∑n
i=1 Uix

(i), where x(i) ∈ RNi , and we will write
x = (x(1); . . . ;x(n)). Let ‖ · ‖(i), ‖ · ‖∗(i) be a pair of conjugate
Euclidean norms in RNi .

Smoothness of f means that the gradient of t 7→ f(x + Uit) is
Lipschitz at t = 0, uniformly in x for all i, with constants Li > 0:

‖UTi [f ′(x+ Uit)− f ′(x)]‖∗(i) ≤ Li‖t‖(i), x ∈ RN , t ∈ RNi . (2)

Block separability of Ψ means that Ψ(x) =
∑n
i=1 Ψi(x

(i)).

B. Examples of Ψ

• Unconstrained smooth minimization: Ψ(x) ≡ 0. Iteration com-
plexity analysis in this case was done in [2]. Our results (not in
this abstract) are slightly better and analysis much simpler.

• Block-constrained smooth minimization: Ψi(x) ≡ indicator
function of some convex set in RNi .

• `1-regularized minimization: Ψ(x) ≡ λ‖x‖1. In machine learn-
ing, this helps to prevent model over-fitting [1] and in com-
pressed sensing this is used to recover sparse signals [3].

II. THE ALGORITHM AND ITS ITERATION COMPLEXITY

Let us define a norm on RN by ‖x‖L = (
∑n
i=1 Li‖x

(i)‖2(i))
1
2 .

Theorem 1. Choose x0 ∈ RN and 0 < ε < 2R2
L(x0), where

R2
L(x0) = maxx{maxx∗ ‖x − x∗‖2L : F (x) ≤ F (x0)}. Further,

pick ρ ∈ (0, 1) and let

k ≥ 2nR2
L(x0)

ε
log
(
F (x0)−F∗

ρε

)
.

If xk is the random vector generated by Algorithm 1, then
Prob(F (xk)− F ∗ ≤ ε) ≥ 1− ρ.

Algorithm 1 Uniform Coordinate Descent for Composite Functions
for k = 0, 1, 2, . . . iterate

Choose ik = i ∈ {1, 2, . . . , n} with probability 1
n

T (i) = arg min
t∈RNi

〈∇f(xk),Uit〉+
Li
2
‖t‖2(i) + Ψ(xk + Uit)

xk+1 = xk + UiT (i)

III. NUMERICAL RESULTS

We will apply Algorithm 1 to random instance of (1) with

f(x) = 1
2
‖Ax− b‖22, Ψ(x) = ‖x‖1, (3)

where b ∈ Rm, A ∈ Rm×n, N = n.
In the first table below we present duration time (in seconds) of n

iterations of Algorithm 1 applied to problem (1), (3) with a sparse
solution x∗ and random sparse matrix A. By ‖ · ‖0 we denote number
of nonzero elements.

‖x∗‖0
‖A‖0 = 108 ‖A‖0 = 109

107 × 106 108 × 107 107 × 106 108 × 107

16× 102 5.89 11.04 46.28 70.48
16× 103 5.83 11.59 46.07 59.03
16× 104 4.28 8.64 46.93 77.44

Let us remark that n = 107 iterations in case when m = 108 and
A has a billion nonzeros are executed in about 1 minute. In order
to get a solution with accuracy ε = 10−5, one needs approximately
40×n iterations. In the next table we illustrate, on a random problem
with m = 107, n = 106, ‖A‖0 = 108 and ‖x∗‖0 = 16 × 102, the
typical behavior of the method in reducing the gap F (xk)− F ∗.

k/n F (xk)− F ∗ ‖xk‖0 time [sec.]
0.0010 < 1016 857 0.01

15.2320 < 1010 997944 65.19
20.6150 < 108 978761 88.25
25.9120 < 106 763314 110.94
30.6620 < 104 57991 131.25
35.0520 < 102 2538 150.02
38.2650 < 100 1633 163.75
40.9880 < 10−1 1604 175.38
42.7140 < 10−4 1600 182.77
44.8600 < 10−6 1600 191.94
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Abstract—It has been established recently that sparse non-negative
signals can be recovered using non-negativity constraints only. This
result is obtained within an idealized setting of exact sparsity and
absence of noise. We propose non-negative least squares − without any
regularization − followed by thresholding for the noisy case. We develop
conditions under which one can prove a finite sample result for support
recovery and tackle the case of an approximately sparse target. Under
weaker conditions, we show that non-negative least squares is consistent
for prediction. As illustration, we present a feature extraction problem
from Proteomics.

I. INTRODUCTION

In various applications, the sparse target β∗ ∈ Rp to be recovered
is known to be non-negative. Several recent papers discuss to what
extent this additional prior knowledge may simplify the problem of
recovering β∗ from n, n < p, uncorrupted linear measurements
y = Xβ∗. In [1], [2], [3], it is pointed out that `1-minimization
is no longer needed if the set A = {β : y = Xβ, β � 0} is
a singleton. Donoho and Tanner [2] study the faces of the cone
XRp+ generated by the columns of X , showing that for random
matrices with entries from a symmetric distribution, A fails to be
a singleton with high probability if n < 2p already for s = 0, where
s = |S|, S = {j : β∗j > 0}. On the other hand, they show that with
X as the concatenation of a row of ones and a random Gaussian
matrix eX , the faces of XRp+ are in a one-to-one relation with those ofeXT p−1, where T p−1 is the standard simplex in Rp, i.e. A is a single-
ton if and only if argminβ∈ eA 1>β, eA = {β : eXβ∗ = eXβ, β � 0}
is. A similar result is shown in [3] with eX replaced by a random
binary matrix. In [4], we have generalized these two positive results
to concatenations of random isotropic sub-Gaussian matrices and a
row of ones as well as to random matrices with entries from a sub-
Gaussian distribution on R+. A major shortcoming of these results
is that they are derived within a little realistic noise-free setting,
and it is unclear how they can be transferred to the noisy case.
Contradicting the well-established paradigm in statistics suggesting
that a regularizer is necessary to prevent over-adaptation to noise, we
show that such a transfer is indeed possible.

II. SPARSE RECOVERY FOR THE NOISY CASE

A. Approach

In [4], we assume that y = Xβ∗ + ε, where ε is zero-mean sub-
Gaussian noise with parameter σ. We suggest to find a minimizer bβ of
the non-negative least squares (NNLS) criterion minβ�0 ‖y −Xβ‖22
first, and to estimate the support S of β∗ by bS(λ) = {j : bβj(λ) > 0},
where bβ(λ) is obtained by hard thresholding bβ with threshold λ ≥ 0,
i.e. all components of bβ smaller than λ are set to zero.

B. Key condition and main result

In the noiseless case, S can be recovered if XSRs+ is a face of
XRp+, i.e. there exists a hyperplane separating the cone generated
by the columns of the support {Xj}j∈S from the cone generated by

the columns of the off-support {Xj}j∈Sc . For the noisy case, we
employ a quantitative notion of separation captured by the constant

bτ(S) = max
τ, w:‖w‖2≤1

τ sb.t. X>S w = 0, n−1/2X>Scw � τ1.

From convex duality, it is easy to see that bτ(S) equals the distance
of the subspace spanned by XS and the simplex generated by
XSc . Based on this relation, we investigate how bτ(S) scales in
dependency of n, p, s. We find that bτ2(S) is of the order s−1 minus
a random deviation term for the random designs well-suitable for
sparse recovery in the noiseless case as mentioned in Section 1.
A brief, qualitative version of our main result is as follows.

Theorem. Set λ > 2σbτ2(S)

q
2 log p
n

. If minj∈S β
∗
j > eλ, eλ = λC(S),

for a constant C(S), bβ(λ) satisfies ‖bβ(λ)−β∗‖∞ ≤ eλ, and bS(λ) =
S, with high probability.

III. APPROXIMATELY SPARSE TARGETS

Using a lower bound on bτ(S) again, we can bound the reconstruction
error as long as β∗ is concentrated on components in S.

IV. PREDICTION CONSISTENCY

We show that for a broad classes of non-negative designs, NNLS pos-
sesses a ’self-regularizing property’ which prevents over-adaption to
noise. For these designs, the mean square prediction error n−1‖X bβ−
Xβ∗‖22 is upper bounded by a term of order O(‖β∗‖1

p
log p/n), a

result resembling that obtained in [5] for `1-regularized least squares.

V. APPLICATION

An important challenge in the analysis of protein mass spectrometry
data is to extract peptide masses from a raw spectrum. In [6],
this is formulated as a sparse recovery problem with non-negativity
constraints in the presence of heteroscedastic noise. It is demonstrated
that NNLS plus thresholding with a locally adaptive threshold out-
performs standard sparse recovery methods.
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Abstract—We propose a new approach to subspace clustering based
on sparse representation. We exploit the fact that each data point in a
union of subspaces can always be written as a sparse linear or affine
combination of points in its own subspace. This allows us to build a
similarity matrix, from which the segmentation of the data can be easily
obtained using spectral clustering. We show that under mild assumptions
on the principal angles between subspaces and the distribution of the data,
the sparsest representation can be found efficiently by solving a (convex)
`1 optimization problem. Our work extends the sparse representation
theory from one to multiple subspaces without the assumption of
uniqueness of the representation. Also, our approach has the following
advantages over the state of the art: it is computationally efficient, it
requires no initialization, can deal with both linear and affine subspaces,
can handle points near the intersections, noise, outliers, and missing
data. We also show that our algorithm significantly outperforms existing
motion segmentation algorithms on 167 sequences.

I. INTRODUCTION

Subspace clustering is an important problem with numerous appli-
cations in image processing (e.g., image representation and compres-
sion) and computer vision (e.g., image/motion/video segmentation).
Given a set of points drawn from a union of linear or affine subspaces,
the task is to find the number of subspaces, their dimensions, a basis
for each subspace, and the segmentation of the data. Over the past
years, several subspace clustering algorithms have been proposed
(see [1]). Among them, methods based on sparse representation [2],
[3] are gaining significant prominence, because of their ability to
handle noise, outliers and missing information. This paper discusses
the sparse subspace clustering (SSC) algorithm, which is a subspace
clustering method based on the sparse representation theory.

II. SPARSE SUBSPACE CLUSTERING

Let {yi}Ni=1 be a collection of N =
∑n

i=1 Ni points drawn from
arrangement of n linear subspaces of RD , {Si}ni=1, of dimensions
{di � D}ni=1. Let the columns of Y i ∈ RD×Ni denote the Ni

points drawn from subspace Si and let Y =
[
Y 1, . . . , Y n

]
Γ

be the matrix containing all the data points, where Γ ∈ RN×N is
an unknown permutation matrix which specifies the segmentation of
data. We assume that we do not know a priori the bases for each one
of the subspaces nor do we know which data points belong to which
subspace. The subspace clustering problem refers to the problem of
finding the number of subspaces, their dimensions, a basis for each
subspace, and the segmentation of data from the matrix Y alone.

SSC is based on the observation that each data point in a subspace
can always be written as a linear combination of all the other
data points. However, the sparsest representation is obtained when
the point is written as a linear combination of points in its own
subspace. Given a sparse representation for each data point, the sparse
coefficients are used to build a similarity matrix from which the
segmentation of data is obtained by spectral clustering.

In the following theorem we prove that for disjoint subspaces (each
pair of subspaces intersect only at the origin), under appropriate
condition on the principal angles between subspaces and distribution
of data, the `1 minimization finds the sparse representation of each
data point as a linear combination of points from the same subspace.

Algorithm 1 Sparse Subspace Clustering (SSC)

Input: A set of points {yi}Ni=1 lying in n subspaces {Si}ni=1.
1: For every point yi, solve the following optimization problem:

min ‖ci‖1 subject to yi = Xici (1)

where Xi = [y1, . . . ,yi−1,yi+1, . . . ,yN ].

2: Form a similarity graph with N nodes representing the N
data points. Connect node i, representing yi, to node j 6= i,
representing yj , by edge weights equal to |cij |+ |cji|.

3: Form the Laplacian matrix L ∈ RN×N and apply K-means to
the n smallest eigenvectors of L.

Output: Segmentation of the data: Y 1,Y 2, . . . ,Y n.

Theorem 1: Given N data points drawn from n subspaces {Si}ni=1

of dimensions {di}ni=1, let Y i denote the data points on Si and Ŷ i

denote the data points on the other subspaces. Let Wi be the set of all
full rank submatrices Y̆ i ∈ RD×di of Y i. If the sufficient condition

max
Y̆ i∈Wi

σdi(Y̆ i) >
√
di max

j 6=i
cos(θij) (2)

is satisfied for all i ∈ {1, . . . , n}, then for every nonzero y ∈ Si,
the solution to the following optimization problem[

c∗i
ĉ∗i

]
= argmin

∥∥∥∥[ci

ĉi

]∥∥∥∥
1

subject to y = [Y i, Ŷ i]

[
ci

ĉi

]
(3)

gives the sparse subspace solution with c∗i 6= 0 and ĉ∗i = 0.

III. APPLICATION TO MOTION SEGMENTATION

We apply SSC to the problem of separating a video sequence into
multiple spatiotemporal regions corresponding to different rigid-body
motions in the scene. Under the affine projection model, the motion
segmentation problem can be cast as clustering a collection of point
trajectories according to multiple affine subspaces. Table I compares
SCC with other subspace clustering methods on the Hopkins155
motion database, a database of 155 sequences of two and three
motions, available online at http://www.vision.jhu.edu/data/hopkins155.
Clearly, SSC outperforms state-of-the-art methods.

TABLE I
CLASSIFICATION ERRORS (%) FOR SEQUENCES WITH 2 MOTIONS

GPCA LLMC LSA SCC RANSAC MSL ALC SSC
Checkerboard 6.09 3.96 2.57 1.30 6.52 4.46 1.55 1.12
Traffic 1.41 3.53 5.43 1.07 2.55 2.23 1.59 0.02
Articulated 2.88 6.48 4.10 3.68 7.25 7.23 10.70 0.62
All 4.59 4.08 3.45 1.46 5.56 4.14 2.40 0.75
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Abstract—We consider the problem of fitting multiple subspaces to a
cloud of points drawn from the subspaces and corrupted by noise/outliers.
We propose a rank minimization approach that decomposes the corrupted
data matrix as the sum of a clean dictionary and a matrix of noise/outliers.
By constraining the dictionary elements to be expressible as a linear com-
bination of each other, we formulate the problem as one of minimizing the
nuclear norm of the matrix of linear combinations. For noisy data, this
problem can be solved in closed by applying a polynomial thresholding to
the SVD of the data. For one subspace, our framework reduces to classical
PCA. For multiple subspaces, our framework provides an affinity matrix
that can be used to cluster the data according to the subspaces. For
data corrupted by outliers, we use an augmented Lagrangian approach,
which requires a combination of our proposed polynomial thresholding
operator with the more traditional shrinkage-thresholding operator.

I. INTRODUCTION

Subspace estimation and clustering are very important problems
with widespread applications in computer vision and pattern recog-
nition. This has motivated the development of a number of techniques
based on sparse representation theory and rank minimization [1],
[2], [3], [4]. For instance, [3] shows that a point in a union of
independent subspaces admits a sparse representation with respect
to the dictionary formed by all other data points, such that the
nonzero coefficients correspond to other points in the same subspace.
Moreover, the nonzero coefficients can be obtained as the solution of

min
C,E

‖C‖1 +
α

2
‖E‖2F s.t. D = DC+E and diag(C) = 0, (1)

where D is the data matrix, E represents the noise and C is the
matrix of coefficients. These nonzero coefficients are then used to
cluster the data according to the multiple subspaces. A very similar
approach is presented in [4]. The major difference is that a low-rank
representation is used in lieu of the sparsest representation, i.e.

min
C
‖C‖∗ + α‖E‖2,1 s.t. D = DC + E, (2)

where ‖E‖2,1 =
∑N

k=1

√∑N

j=1
|Ejk|2 is the `2.1 norm of E.

II. SUBSPACE CLUSTERING IN THE PRESENCE OF NOISE

In this section, we propose the following rank minimization
approach to subspace clustering in the presence of noise:

min
A,C,E

‖C‖∗ +
α

2
‖E‖2F s.t. A=AC and D=A+ E. (3)

While in principle this problem appears to be very similar to those in
(1) and (2), there are a number of key differences. First, rather than
expressing the noisy data as a linear combination of itself + noise,
i.e., D = DC + E, we search for a clean dictionary A, which it
is self-expressive, i.e., A = AC. We then assume that the data is
obtained by adding noise to the clean dictionary, i.e., D = A + E.
Thus, our method searches simultaneously for a clean dictionary, the
sparse coefficients and the noise. Second, the main difference with
(1) is that the `1 norm of C is replaced by the nuclear norm, and
the main difference with (2) is that the `2,1 norm of E is replaced
by the Frobenius norm. As we will show, these changes result in a
key difference between our method and the state of the art: while the

solutions to (1) and (2) require convex optimization, the solution to
(3) can be computed in closed form from the SVD of D. The proof of
this result will be done in three steps. In Lemma 1 we will relax the
constraint A = AC and add a penalty τ

2
‖A−AC‖2F to the cost. We

will show that the optimal solution for C, with A kept fixed, can be
obtained in closed form from the SVD of A. Since the optimal E is
D−A, we will not consider the term α

2
‖E‖2F . Then, in Lemma 2 we

will optimize the relaxed cost over both A and C and show that the
optimal A can be obtained in closed form by applying a polynomial
thresholding to the SVD of D. Finally, in Lemma 3 we will show
that the solution to (3) is given by classical PCA, except that the
number of principal components can be automatically determined.

Lemma 1: Let A = UΛV T be the SVD of a A. The optimal solu-
tion to minC ‖C‖∗+ τ

2
‖A−AC‖2F is Ĉ = V1(I− 1

τ
Λ−2

1 )V T1 , where
U = [U1 U2], Λ = diag(Λ1,Λ2) and V = [V1 V2] are partitioned
according to I1 = {i : λi > 1/

√
τ} and I2 = {i : λi ≤ 1/

√
τ}.

Lemma 2: Let D = UΣV T be the SVD of the data matrix D. The
optimal solution to minA,C ‖C‖∗ + τ

2
‖A − AC‖2F + α

2
‖D − A‖2F

is given by Â = UΛV T and Ĉ = V1(I − 1
τ

Λ−2
1 )V T1 , where each

entry of Λ = diag(λ1, . . . , λn) is obtained from one entry of Σ =
diag(σ1, . . . , σn) as the solution to

σ = ψ(λ) =

{
λ+ 1

ατ
λ−3 if λ > 1/

√
τ

λ+ τ
α
λ if λ ≤ 1/

√
τ
, (4)

that minimizes the cost, and U = [U1 U2], Λ = diag(Λ1,Λ2) and
V = [V1 V2] are partitioned according to I1 and I2.

Lemma 3: Let D = UΣV T be the SVD of the data matrix D. The
optimal solution to minA,C ‖C‖∗ + α

2
‖D − A‖2F s.t. A = AC

is given by Â = U1Σ1V
T
1 and Ĉ = V1V

T
1 , where Σ1, U1 and V1

correspond to the the top r = arg mink k + α
2

∑
i>k

σ2
k singular

values and singular vectors of D, respectively.

III. SUBSPACE CLUSTERING IN THE PRESENCE OF OUTLIERS

In this section, we propose the following rank minimization
approach to subspace clustering in the presence of outliers:

min
A,C,E

‖C‖∗+
α

2
‖D−A−E‖2F+ < Y,D−A−E > +γ‖E‖1 (5)

It follows from Lemma 3 that the optimal solution for C and A such
that A=AC is A=U1Λ1V

T
1 and C=V1V

T
1 , where V1 corresponds

to the singular values of D −E + α−1Y larger than
√

2/α. Given
A and C the solution for E is obtained by shrinkage thresholding of
D−A+α−1Y . The algorithm proceeds by alternating these two steps.
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Abstract—We develop a novel geometric multiresolution analysis for
analyzing intrinsically low-dimensional point clouds in high-dimensional
spaces, modeled as samples from ad-dimensional setM (in particular, a
manifold) embedded inRD , in the regime d≪ D. This type of situation
has been recognized as important in various applications, such as the
analysis of sounds, images, and gene arrays. In this paper weconstruct
data-dependent multiscale dictionaries that aim at efficient encoding and
manipulating of the data. Unlike existing constructions, our construction
is fast, and so are the algorithms that map data points to dictionary
coefficients and vice versa. In addition, data points have a guaranteed
sparsity in terms of the dictionary.

I. I NTRODUCTION

Data sets are often modeled as point clouds inR
D , for D large, but

having some interesting low-dimensional structure, for example that
of a d-dimensional manifoldM, with d ≪ D. WhenM is simply
a linear subspace, one may exploit this assumption for encoding
efficiently the data by projecting onto a dictionary ofd vectors in
R

D (found by SVD), at a cost(n + D)d for n data points. When
M is nonlinear, there are no “explicit” constructions of dictionaries
that achieve a similar efficiency: typically one uses eitherrandom
dictionaries, or dictionaries obtained by black-box optimization. Such
constructions (e.g. [1], [3], [4]), which typically cast the sparsity
requirement as an optimization problem, suffer from many local
minima and lack of theoretical guarantees. In this paper we construct
data-dependent dictionaries based on ageometric multiresolution
analysis (GMRA) of the data, inspired by multiscale techniques in
geometric measure theory, to remedy the above deficiencies.

II. GEOMETRICWAVELETS

Assume we haven samples drawn i.i.d. from ad-dimensional
compact Riemannian manifoldM ⊂ R

D according to the natural
volume measuredvol on M. We use such training data to present
how to construct geometric wavelets, though our construction easily
extends to any point-cloud data, by using locally adaptive dimensions.
Multiscale decomposition. We start by constructing a multiscale
nested partition ofM into dyadic cells{Cj,k}k∈Γj,0≤j≤J in R

D.
There is a natural treeT associated to the family: For anyj ∈ Z

andk ∈ Γj , we letchildren(j, k) = {k′ ∈ Γj+1 : Cj+1,k′ ⊆ Cj,k}.
Multiscale SVD. For everyCj,k we define the mean (inRD) by
cj,k := E[x|x ∈ Cj,x] and the covariance bycovj,k = E[(x −
cj,k)(x−cj,k)∗|x ∈ Cj,k]. Let the rank-d SVD of covj,k becovj,k =
Φj,kΣj,kΦ∗j,k. The subspace spanned by the columns ofΦj,k, and
then translated to pass throughcj,k, 〈Φj,k〉+ cj,k, is an approximate
tangent space toM at locationcj,k and scale2−j . We define the
coarse approximations, at scalej, to the manifoldM and to any
point x ∈M, as follows:

Mj := ∪k∈Γj
Pj,k(Cj,k), xj := Pj,k(x), x ∈ Cj,k, (1)

wherePj,k is the associated affine projection toCj,k.
Multiscale geometric wavelets. We can then introduce our wavelet
encoding of the difference betweenMj and Mj+1, for j < J .

1 2 3 4

5 6 7 8

9 projection original

1 2 3

4 5 6

7 8 9

Fig. 1. We apply the GMRA to 2414 (cropped) face images from 38
human subjects in fixed frontal pose under varying illumination angles.
This figure shows the multiscale approximations, from coarse to fine, of
a data point (top), and the corresponding subset of dictionary elements,
arranged in a multiscale fashion (bottom).

These operators are low-dimensional “detail” operators analogous to
the wavelet projections in wavelet theory, and satisfy, by construction,

PMj+1
(x) = PMj

(x) + QMj+1
(x), ∀x ∈ M. (2)

Geometric Wavelet Transforms (GWT). Given a GMRA structure,
we may compute a discrete Forward GWT for a pointx ∈ M that
maps it to a sequence of wavelet coefficient vectors:

qx = (qJ,x, qJ−1,x, . . . , q1,x, q0,x) (3)

whereqj,x := Ψ∗j,x(xj − cj,x). Note that, for a fixed precisionǫ >

0, qx has a maximum possible length(1 + 1

2
log2

1

ǫ
)d, which is

independent ofD and nearly optimal ind [2].
Sparsity The geometric wavelet dictionary may be constructed effi-
ciently and is associated with efficient direct and inverse transforms.
Depending on the geometric regularity of the data, it provides sparse
(compressible) representations for data points.
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Abstract—In this work we consider a Bayesian setting for sparse
representation modeling and use the Boltzmann Machine (BM) to sta-
tistically model dependencies in the representation vector. We show that
the exact MAP/MMSE estimation for the general case is computationally
complex, and we propose a greedy approximation for both. Considering
the special case where the dictionary is unitary, we derive a message-
passing algorithm that leads to an exact MAP estimation. We further
show that the MPM estimation improves over the MAP one for this case.
Finally, when the model parameters defining the underlying graph are
unknown, we suggest an algorithm that learns these parameters directly
from the data using a Maximum-Pseudo-Likelihood approach.

I. BACKGROUND

The classic assumption of independence between the dictionary
atoms in sparse representation modeling is often wrong. In this work
we introduce such a structure to the representation vector in a flexible
and adaptive manner. We consider a signal y that is built as y = Ax+
e, where A is a dictionary of size n-by-m, x is a sparse representation
vector and e is additive white Gaussian noise with variance σ2

e . We
denote the sparsity pattern of x by S ∈ {−1, 1}m (Si = 1 implies
xi ̸= 0). We assume a Gaussian distribution with zero mean and
variance σ2

x,i for each nonzero representation coefficient xi. The core
of our model lies in the prior distribution we place on the sparsity
pattern. We follow the suggestion of [1], [2] and assume that the
sparsity pattern is modeled by a Boltzmann machine (BM),

Pr(S) =
1

Z
exp

(
bT S +

1

2
ST WS

)
. (1)

This is a convenient graphical model for describing statistical de-
pendencies between a set of binary random variables. The BM
distribution can be easily represented by an MRF - a bias bi is
associated with a node i and a nonzero entry Wij in the interaction
matrix results in an edge connecting nodes i and j with the specified
weight. The BM can serve as a powerful prior on the support in the
signal model, as it can achieve sparsity and at the same time capture
statistical dependencies and independencies in the sparsity pattern.
Using the BM as a model for the support, several questions naturally
arise: how to perform pursuit for finding the sparse representation,
and how to find the model parameters W, b. In our work we address
these two questions, as described below1.

II. OUR WORK CONTRIBUTION

We adopt a Bayesian point of view, aiming to recover x from y. For
general dependency models, we show that exact MAP and MMSE
estimation of the sparse representation becomes computationally
complex. To simplify the computations, we suggest using a greedy
approach, which approximates these estimators and is suitable for
any set of model parameters. For approximate MAP estimation we
suggest an OMP-like algorithm, that starts with an empty support,
and adds one entry at a time by greedily maximizing the posterior
Pr(S|y). Once the support is found, an oracle formula is used to

1Parts of this work are reported in [5], [6] and others are new.

estimate the non-zero entries in the representation. We also consider
a thresholding-like version of this algorithm.

For the MMSE approximation we imitate the Random-OMP algo-
rithm [3]: Instead of adding to the support the element that maximizes
the posterior in each iteration, we make a random choice with
probabilities proportional to this posterior’s marginals. Second, we
perform several runs of this algorithm and average the resulting sparse
representations to obtain the final estimate for x.

When the dictionary is square and unitary, the BM distribution
is a conjugate prior of the estimation problem. Based on this
observation, we get that finding the MAP estimator for S becomes
an inference task on a modified BM. We propose to handle this NP-
hard computational task by assuming a banded interaction matrix W ,
and using an efficient message passing algorithm for obtaining the
exact MAP estimate. Furthermore, we explore the MSE for various
estimators and develop an expression for the error of a Bayesian
estimator, based on the single-node marginals of the posterior. We
observe that the Maximum Posterior Marginal (MPM) estimator for
the support leads to optimal performance (in terms of MSE) among all
estimators that are based on a single support. Finally, we develop an
expression for the MMSE estimator and show how it can be evaluated
and the gap between this and the MPM.

Finally, we study the problem of learning the Boltzmann parame-
ters of the underlying graph from a set of supports. We develop an
efficient algorithm which is based on a maximum pseudo-likelihood
(MPL) approach and uses the sequential subspace optimization
(SESOP) method for solving it [4]. We demonstrate the effectiveness
of our proposed adaptive BM-based approach, by performing de-
noising experiments on image patches using a fixed DCT dictionary
and learned BM parameters. The results show an improvement of
∼ 1[dB] over plain OMP denoising on these patches.
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Abstract—In this work, we present a source localization method for
broadband sources impinging from the far-field on a uniform linear
array (ULA) of sensors, based on a group sparsity structure over the
different frequency bands and the joint sparsity structure over several
time snapshots.

I. SPARSITY BASED NARROWBAND SOURCE LOCALIZATION

Source localization has been an active research field, playing
fundamental role in many signal processing areas such as radar,
sonar, seismology and acoustic tracking. The problem may also be
referred to as Direction-of-arrival (DOA) estimation, when arrays of
sensors are employed, and its main objective is to give an estimate
of the spatial energy spectrum and therefore determine the number
and location of the sources of energy corresponding to the peaks of
the spatial spectrum.

The emerging field of sparse representations and compressed
sensing (CS) has given renewed interest to the problem of source
localization. The concept of spatial sparsity was first introduced in
[1], where it was shown that the source localization problem can
be cast as a sparse representations problem in a redundant dictionary
and the `1-SVD method was proposed for the recovery of the inverse
system.

In [2], the dicionary is generated after the discretization of the
angular space, containing the impulse responses for each potential
direction of arrival. The dictionary is overcomplete meaning that the
number of sensors is smaller than the number of possible locations
(DOAs). Therefore, considering a linear array of M sensors, the array
output can be expressed as:

y(t) = Φs(t) + n(t) (1)

where s(t) is a k-sparse vector of length N , y(t) is a M × 1
measurements vector of the array of sensors and n(t) is the additive
noise vector. Φ is a redundant dictionary as M < N , which contains
the array responses of the potential angles of arrival:

Φ = [a(θ1), . . . ,a(θN )]. (2)

The sparse solution to the above underdetermined system of linear
equations can be approximated using convex optimization (e.g. Lasso
or BPDN) or greedy approaches (e.g. OMP, CoSaMP, IHT etc.).

However, this single snapshot approach requires that the inverse
problem should be solved at each time index separately. By taking
multiple snapshots and assuming that ths sources are not moving, as
described in [2], we can formulate the source localization problem as
a multiple measurement vector (MMV) joint sparse recovery problem,
exploiting the fact that the sources will share a common support over
all time snapshots:

Y = ΦS + N (3)

where Y and N are M ×L matrices and S is a N ×L matrix with
L equals the number of time snapshots. Therefore, by enforcing only
spatial sparsity and not temporal one can use convex optimization
(e.g. `1/`2 minimization) or greedy methods (e.g. SOMP) to recover
the joint sparse entries.

II. PROPOSED APPROACH FOR BROADBAND SOURCES

The described source localization methods of the previous section
assume that the impinging sources on the array of sensors are
narrowband centered at a carrier frequency. In the case of broadband
sources, we first need to transform the data into the time-frequency
domain and assume that each frequency bin contains the energy of
k narrowband sources. Also, in the broadband scenario the manifold
matrices (or redundant dictionaries) are different for different fre-
quency bands due to the fact that the central carrier frequency varies.
Subsequently, a naive approach could be to use the joint sparsity
model for several time snapshots at each frequency bin ωq:

Yq = ΦqSq + Nq. (4)

However, assuming that the sources are stationary, we expect
that the sparse support will be common for all different frequency
bins. Therefore, the proposed approach by interleaving the values
of the solution vector appropriately, exploits the additional structure
of grouped sparsity over all frequency bins. This proves to be quite
beneficial as the proposed approach suppresses the undesirable effects
of spatial aliasing.

More specifically, experiments showed that by choosing the spac-
ing of the linear array to be much larger than half the wavelength of
the highest frequency, the algorithm can still achieve super-resolution
recovering the correct support, corresponding to the unknown DOAs,
over all frequencies. Therefore, for the specific setting the algorithm
outperforms the single frequency bin spatial sparsity approach as well
as other conventional array processing methods such as MUSIC and
Capon’s beamformer.
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I. INTRODUCTION

Penalization methods that build on the `1-norm, referred to as
Lasso procedures, are now widely used to tackle simultaneously
signal estimation and feature selection in high-dimensional problems.
In this framework, providing the signal with an a priori meaningful
group structure beyond mere signal sparsity is an efficient way to
improve performances.

Here we propose a new regularization term which builds upon the
assumption that groups are sign-coherent, namely that coefficients
within a group are either all null, non-negative or non-positive.
Thanks to this apparently strong assumption on the signal structure
we gain in flexbility in the inference of sparsity patterns. As a result
our method acquires robustness to possible miss-specifications in the
group structure compared to the group-Lasso [1], without paying the
price of an additional penalty term as for the sparse group-Lasso [2].

This framework is large enough to cover settings where groups are
derived a priori from the experimental design or defined empirically
from the correlation structure among covariates. In both cases, the
aim is to gather redundant or consonant variables in the same group,
so as to force them to collaborate instead of conflicting with each
other. Multitask datasets, where observations are split into tasks with
distinct but supposedly close underlying signals, particularly fit this
framework (see [3] in the context of Gaussian Graphical model
inference). Note that flexibility in the sparsity pattern is essential in
this multitask setting, allowing some tasks not to follow the overall
pattern punctually.

II. COOPERATIVE-LASSO

Let Y be the response random variable from the exponential
family that we want to predict from a size-p random vector
X = (X1, . . . , Xp), assuming the existence of a function g and
a parameter β? such that E(Y |X) = g(Xβ?). We assume that
covariates X = (X1, . . . , Xp) are partionned into K groups Gk,
k = 1, . . . ,K such that the true support of β∗, namely the set of
non zero coefficients S = {j ∈ {1, . . . , p}, β?

j 6= 0}, is linked to this
group structure. We observe a sample of size n which we represent
by a size n vector y and a size n× p matrix X.

For any vector v, let v+ and v− be the componentwise positive
and negative parts of v. We call coop-norm of v the sum of group-
norms on v+ and v−.

‖v‖coop =

K∑
k=1

(∥∥v+
Gk

∥∥
2

+
∥∥v−Gk

∥∥
2

)
Denote by `(y,X; β) the negative log-likelihood. The coop-Lasso
estimate of β? is

β̂
coop

= arg min
β∈Rp

`(y,X; β) + λ‖β‖coop ,

where λ ≥ 0 is a tuning parameter common to all groups.
To solve this problem, we develop an algorithm built upon the

subdifferential calculus approach originally proposed by Osborne,
Presnell and Turlach [4] for the Lasso and adapted to the group-
Lasso by Roth and Fischer [5].

We prove estimation and selection consistency of this estimator
in the context of linear regression under variants of the so-called
irrepresentable condition. In order to provide tools for the choice of
λ, we also derive AIC and BIC criteria thanks to an estimation of its
effective degrees of freedom in the linear regression setup.

III. ROBUST MICROARRAY GENE SELECTION

We analyse the dataset proposed by Hess et al. [6] providing gene
expression profiles of patients treated with chemotherapy prior to
surgery, classified as presenting either a pathologic complete response
(pCR) or a residual disease (not-pCR). The objective of this dataset
was to extract a small set of genes that best predict the response
to preoperative chemotherapy and be able to prevent patients that
would probably not benefit from chemotherapy from undergoing such
a harsh treatment.

Each gene is covered by a set of sibling probes measuring the
expression of different but possibly overlapping parts of the gene
that, except in cases of alternative splicing, should provide redundant
signals. The usual processing of this type of data is based upon
individual probe measurements, roughly assimilated to genes in the
final interpretation step. Here we take the gene level into account
right from the statistical analysis, requiring sign-coherent effects of
probes related to same genes. Requesting an overall consensus on
the sign of effects at the gene level supports biological coherence
while allowing for potential null effects within a group leaves room
for potential alternative splicing divergences.
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The general-purpose tools developed for quantifying the spectra
of random matrices: the non-commutative Khintchine inequality [1],
a lemma due to Rudelson [2], ε-net arguments [1], and the Laplace
transform approach due to Ahlswede and Winter [3], give information
on only the extreme singular values.

We introduce a simple technique, based upon the variational
characterization of the eigenvalues of self-adjoint matrices and the
Laplace transform machinery, for bounding all eigenvalues. To
demonstrate the power of the variational Laplace transform, we
investigate the spectra of matrices formed by sampling columns from
a matrix with orthogonal rows and bound the number of samples
needed to estimate eigenvalues of the covariance matrix of a Gaussian
vector to within relative precision.

I. THE VARIATIONAL LAPLACE TRANSFORM

Consider X =
∑

j
Xj , a sum of independent, random, self-

adjoint matrices. Let

V
n
d = {V ∈ Cn×d : V ∗V = I}

denote the collection of orthonormal bases for the d-dimensional
subspaces of Cn.

Using the Courant-Fischer theorem to modify the Laplace trans-
form machinery in [4], we find that

P {λk(X) ≥ t} ≤ inf
θ>0

min
V ∈Vn

n−k+1

{
e−θt · E tr eθV ∗XV

}
≤ inf
θ>0

min
V ∈Vn

n−k+1

[
e−θt · tr exp

{∑
j

θV ∗AjV

}]
,

(1)

where the deterministic matrices Aj are chosen to satisfy the relation
EeXj ≤ eAj .

II. CHERNOFF AND BENNETT INEQUALITIES

The variational Laplace transform (1) is applied by constructing
appropriate Aj and using a convenient choice of V .

If the matrices Xj are all positive semidefinite, let V+ in Vnn−k+1

satisfy
λk(EX) = λmax (V ∗+ (EX)V+) .

Then the following Chernoff-type bound holds:

P {λk(X) ≥ (1 + δ)λk(EX)} ≤ (n−k+1)·
[

eδ

(1 + δ)1+δ

]λk(EX)/R(V+)

for δ > 0. Here, R(V+) quantifies the concentration of the summands
in the invariant subspace determined by V+.

If the summands Xj are self-adjoint and we are given the variance

σ2
k = λk

(∑
j

EX2
j

)
,

then the following Bernstein-type inequality holds:

P {λk(Xj) ≥ t} ≤ (n− k + 1) · exp

{
−t2/2

σ2
k +R(V+)t/3

}
.

Chernoff and Bernstein bounds on the lower tails of λk are also
derived.

III. COLUMN SUBSAMPLING OF MATRICES WITH

ORTHONORMAL ROWS

LetU be a matrix with orthonormal rows. Sample from its columns
by right multiplication with a diagonal matrix whose entries are
independent Bern(p) random variables, to form Û = UD. How
does the spectrum of Û behave? We apply our Chernoff bounds to
estimate the probability that the kth singular value of Û deviates
either above or below

√
p, and find that the probability of deviation

is controlled by a coherence-like quantity τk satisfying

τk ≤ min
|I|≤k

max
j

∑
i∈I

u2
ij .

IV. COVARIANCE ESTIMATION TO RELATIVE PRECISION

Draw i.i.d samples {ηj}nj=1 ⊂ R
p from a N (0,C) distribution.

The classical covariance estimation problem (how many samples are
needed to ensure that the empirical covariance estimator has a fixed
relative accuracy in the spectral norm?) has been studied extensively,
and it is known that, for many distributions of interest, O(p) samples
suffice [5].

We investigate for the first time, using our Bernstein bounds, the
question of how many samples are needed to ensure that individual
eigenvalues are estimated to relative precision. We find that O(k log k)
and O((p − k + 1) log(p − k + 1)) samples are needed, respec-
tively, to ensure that with high probability the kth eigenvalue is
not underestimated or overestimated. Although we prove this result
only for Gaussian vectors, the argument can be extended to other
distributions.
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There has been substantial interest in dimension-reducing random
projections over the last decade as a way to preserve enough structure
to solve a regularized inverse problem (1) or exploit this structure
for fast matching (3) or to quickly characterize a linear system by its
approximate dimension-reduced counterpart.

This body of research tells us with overwhelming probability that
a random projection of any finite union of subspaces is roughly
isometric, a key property used in establishing recovery bounds.

Perhaps not surprisingly, there is also a wide variety of classes of
parametric functions in L2 for which these properties also apply. For
this work, we explore the class of parametric functions F = {fτ :
τ ∈ S} with parameter τ ∈ S ⊂ RP for some bounded set S. We
further impose some Lipchitz-like property on F : ‖fτ1 − fτ2‖L2 ≤
‖τ1− τ2‖2 though this work may be trivially extended to a union of
sets Sk that each obey ‖fτ1−fτ2‖L2 ≤ Bk‖τ1−τ2‖2 for a different
Lipchitz constant Bk for each set Sk.

Consider the problem of parametric estimation:

f̄ = arg min
f∈F
‖f − h‖

The randomly projected version is then:

f̂ = arg min
f∈F
‖Φ(f − h)‖ (1)

for some random operator Φ : L2(RD)→ RM .
For the sake of this work, the operator is defined as:

[Φf ]m = 〈Gm,ΨT f〉

where Gm[n] ∼ N(0, 1/M) is a sequence of i.i.d. Gaussian random
variables and ΨT : L2(RD) → `2 is some arbitrary orthonormal
transform (e.g. a wavelet analysis operator) that need not be a
sparsifying transform. Note that E

ˆ
‖Φf‖2

˜
= ‖f‖2.

The main result is that the f̂ that minimizes the compressed
formulation will be characteristically similar to the deterministic
minimizer f̄ in the following sense:

1

r
‖f̂−h‖−CP ε

p
2 log r ≤ ‖Φ(f̂−h)‖ ≤ ‖Φ(f̄−h)‖ ≤ (1+δ)‖f̄−h‖,

(2)
with probability at least:

1− e−Mc0(δ) − 2MN(S, ε)r−M , (3)

for some constant CP (e.g. CP = 4
√
P ), for any chosen r > 1, and

where N(S, ε) in the number of points τn needed to cover S with
radius at most ε (something like |S|ε−P ).

This approach scales well as the modeling error decreases. In
particular, when h ∈ F , we have ‖f̂ − h‖ ≤ 2CP r

3/2ε for all
positive upper bounds with arbitrarily high probability by choosing
ε = r−2 → 0 (i.e. f̂ = h in probability).

The second and third inequalities of Eq. 2 follow from the charac-
terization of the minimizing f̂ and the Chernoff bound, respectively.

A brief sketch of the first inequality follows. For any such τn in the
N(S, ε) covering, we have:

P

(
sup

τ∈B(τn,ε)

‖Φ(fτ − fτn)‖ > CP εu

)
≤M exp(−Mu2/2),

which we state without proof. After utilizing u =
√

2 log r, we then
have for all τ ∈ B(τn, ε):

‖Φ(fτ−h)‖ ≥ ‖Φ(fτn−h)‖−‖Φ(fτ−fτn)‖ ≥ 1

r
‖f̂−h‖−CP ε

p
2 log r

(4)
with probability at least:

1− r−M −Mr−M

where the first term comes from a small lower bound on a chi-square
random variable:

P


‖Φf‖2 < 1

λ2
‖f‖2

ff
≤ λ−M .

Because Eq. 4 is true for all fτ ∈ F with probability at least

1− 2MN(S, ε)r−M ,

it must also be true for f̂ as desired.
A straightforward application is the matched filtering problem, also

considered in work by Eftekhari et al. (2). We take the class F =
{fτ = f0(t − τ) : τ ∈ S} of bounded shifts of some Lipchitz-
continuous unit-norm base function f0 where we again impose the
condition that ‖fτ1−fτ2‖L2 ≤ ‖τ1−τ2‖2. Here, P = D and we will
require M = O(P + log(|S|)) measurements for accurate recovery.

This work could be viewed as a “1-sparse” solution to the
continuous case of compressed sensing on parametric functions and
opens up many questions about the viability of the applicability of
compressed sensing to functions that are some finite weighted sum
of some infinite dictionary of parameterized basis functions.
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Abstract—In this talk, we survey our recent analysis of randomized,
compressive block diagonal matrices. We present concentration of mea-
sure bounds which indicate that (unlike dense i.i.d. random matrices) the
probability of norm preservation actually depends on the signal being
measured. We discuss implications of this fact in various compressive
signal processing applications. We also present an RIP bound for block
diagonal matrices and explain that in the best case—for signals that
are sparse in the frequency domain—these matrices perform nearly as
well as dense i.i.d. random matrices despite having many fewer nonzero
entries.

EXTENDED ABSTRACT

The analysis of randomized compressive linear operators often
relies on quantifying the likelihood that a random matrix will preserve
the norm of a signal after multiplication. For example, a standard
concentration of measure bound [1] states that for a fixed signal
x ∈ RN , if Φ is an M ×N matrix populated with independent and
identically distributed (i.i.d.) random entries drawn from a suitable
distribution, the probability that

∣∣‖Φx‖22 − ‖x‖22
∣∣ will exceed a small

fraction of ‖x‖22 decays exponentially in the number of measurements
M . From this one can also prove that if M = O(K log(N/K)),
then with high probability the Restricted Isometry Property (RIP)
will hold, ensuring that ‖Φx‖22 ≈ ‖x‖22 uniformly across all K-
sparse signals x. Such results have immediate applications in proving
the Johnson-Lindenstrauss (JL) lemma, establishing signal recovery
bounds in Compressive Sensing (CS), etc.

Unfortunately, dense random matrices with i.i.d. entries are often
either impractical because of the resources required to store and work
with a large unstructured matrix, or unrealistic as models of acqui-
sition devices with architectural constraints preventing global data
aggregation. In this talk, we will survey our recent analysis [2, 4] of
randomized, compressive block diagonal matrices. We model a signal
x ∈ RNJ as being partitioned into J blocks x1, x2, . . . , xJ ∈ RN ,
and for each j ∈ {1, 2, . . . , J}, we suppose that a local measurement
operator Φj : RN → RMj collects the measurements yj = Φjxj .
Concatenating all of the measurements into a vector y ∈ R

∑
j Mj ,

we then have
y1

y2

...
yJ


︸ ︷︷ ︸

y: (
∑

j Mj)×1

=


Φ1

Φ2

. . .
ΦJ


︸ ︷︷ ︸

Φ: (
∑

j Mj)×NJ


x1

x2

...
xJ

 .

︸ ︷︷ ︸
x:NJ×1

(1)

In some scenarios, the local measurement operator Φj may be unique
for each block, and we say that the resulting Φ has a Distinct Block
Diagonal (DBD) structure. In other scenarios it may be appropriate
or necessary to repeat a single operator across all blocks (such that
Φ1 = Φ2 = · · · = ΦJ ); we call the resulting Φ a Repeated Block
Diagonal (RBD) matrix.

We will present concentration of measure bounds [2] both for DBD
matrices populated with i.i.d. subgaussian random variables and for
RBD matrices populated with i.i.d. Gaussian random variables. Our
main results essentially state that the probability of concentration
depends on the “diversity” of the component signals x1, x2, . . . , xJ

being well-matched to the measurement matrix, where this notion of
signal diversity depends on whether the matrix is DBD or RBD.
Such nonuniform concentration behavior is markedly unlike that
of i.i.d. dense matrices, for which concentration probabilities are
signal agnostic. For the most favorable classes of signals, however,
the concentration of measure probability for block diagonal matri-
ces scales exactly as for an i.i.d. dense random matrix (that is,
the failure probability decays exponentially in the total number of
measurements). We will provide several examples of signal classes
that are particularly favorable for measurement via DBD or RBD
matrices; among these are signals having sparse representations in
the frequency domain.

Our concentration of measure bounds have a number of immediate
applications. We will present a modified version of the JL lemma
appropriate for block diagonal matrices and explain how this lemma
can be used to guarantee the performance of various compressive-
domain signal inference and processing algorithms. We will also
briefly explain how our concentration bounds for block diagonal
matrices can be used as an analytical tool when studying the
structured Toeplitz and observability matrices that arise in certain
linear systems applications.

Unfortunately, it does not appear that one can couple our nonuni-
form concentration results with covering arguments to arrive at a
compelling RIP bound for block diagonal matrices. Using tools from
the theory of empirical processes [3], however, we have proved [4]
that DBD matrices can indeed satisfy the RIP but that the requisite
number of measurements depends on the coherence of the basis in
which the signals are sparse. We will present this result and explain
that for the best case signals—which again include those that are
sparse in the frequency domain—these matrices perform nearly as
well as dense i.i.d. random matrices despite having many fewer
nonzero entries.
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Abstract—In recent years several methods relying on anisotropic tri-
angulations were proposed, allowing for extremely sparse representations
of edge singularities in images. This contribution has two aims: existing
techniques and theoretical results are surveyed and compared to other
anisotropic methods, and a new image estimator based on continuous
and piecewise linear splines over anisotropic Delaunay triangulations is
introduced. We prove an abstract consistency result for this estimator
as a first indication of the potential of anisotropic triangulations in the
context of image denoising. Algorithmic and computational aspects will
be also adressed.

I. MOTIVATION

One of the most important topics of recent research in signal
processing is the design and analysis of non-linear methods to analyse
and process signals with heterogeneous features.

The observation that a given signal class has a specific structure
leads to the natural question : How to model the prior knowledge
available for this class ? In spite of their diversity most approaches
recently proposed to tackle this problem share a leading principle:
the search for small modelling sets of functions which still contain
the signals of interest.

A decisive impulse has been given by the introduction of the con-
cept of sparsity in statistical and computational image processing [5]:
the signal under consideration is assumed to be well approximated by
a few coefficients of a fixed frame. When dealing with sharp edges
in images, the design of modelling sets is driven by anisotropy: the
representations should adapt locally to singularities along curves, as
for instance curvelet representations do [1].

Anisotropic triangulations are based on very large dictionaries of
geometrical atoms (see [4] for a survey on this topic). The resulting
output is at the same time very sparse, adapted to the geometrical
contents of the signal, and has very few oscillations.

In this contribution we propose to use anisotropic Delaunay trian-
gulations in the context of edge-preserving image estimation.

II. PRINCIPLE

Let us introduce some useful notations. We consider a true (un-
known) image f : [0, 1]2 and assume noisy observations

fεi = fi + σεi, i ∈ X (1)

where X = {1, . . . , N}2 is the set of indices, (εi)i∈X are iid
N(0, 1), σ is the noise level and (fi)i∈X results from the discretiza-
tion of f .

For a given set Y ⊂ X , let D(Y ) denote its Delaunay triangu-
lation and SD(Y ) the space of continuous linear splines on D(Y ).
For formal definitions and a discussion of uniqueness of Delaunay
triangulations, we refer to our papers [3] and [4].

In this work we introduce the following abstract estimator based
on anisotropic Delaunay triangulations:

f̂Nγ := argminu∈SD(Y )
‖fε − u‖2 + γ|Y | (2)

The first term controls fidelity to the observed data, while the second
penalises the size of the triangulations used for estimating the signal.

We investigate some properties of estimators f̂NγN
when N →∞:

we prove conditions on γN for consistency and almost sure con-
vergence rates of the estimation error for elementary classes of α-
piecewise regular signals. The choice of γN depending on the noise
level σ will be also discussed. The extension to other dimensions than
2, (relevant cases being dimensions 1 to 3) and for more general noise
than in (1) (subgaussian) is straightforward.

III. ALGORITHM

The penalisation term in (2) is non-convex in u and in contrast to
minimisation problems related to sparse representations over frames,
finding a solution of (2) is equivalent to a search in a structured
subset of a large dictionary. The convex relaxation machinery of the
sparse framework (see [2]) is therefore difficult to apply. A heuristic
to obtain an approximate solution of (2) is to use greedy algorithms.
We introduce a modified version of our adaptive thinning algorithm
proposed in [3] in the context of image compression. In a simplified
formulation, our implementation relies on the following iteration:

u0 := fε = (fεi )i∈X , Y
0 = X

for i=1,P (P iterations)

(ui+1, Y i+1) = argmin u∈SD(Y ′)
Y ′=Y i\{x},x∈Y i+1

(‖fε − u‖2 + J(u))

end

Here, J denotes a suitable penalisation term. Compared to the
algorithm in [3], this additional penalisation is required in order
to prevent from solutions locally reproducing noise. This implies
that J should be chosen such that the sparsity of the gradient of
u for piecewise smooth signals is taken into account and is therefore
not necessarily convex. We illustrate the discussion by numerical
investigations, also adressing crucial issues like the choice of the
number of iterations P .
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Compressive sensing (CS) merges the operations of data acquisition
and compression by measuring sparse or compressible signals via
a linear dimensionality reduction and then recovering them using a
sparse-approximation based algorithm. A signal is K-sparse if its
coefficients in some transform contain only K nonzero values; a
signal is compressible if its coefficients decay rapidly when sorted
by magnitude. The standard CS theory assumes that the sparsifying
transform is an orthogonal basis.

Recently, progress has been made on CS recovery using more
general, non-orthogonal transform based on frames. A tight frame
consists of an analysis frame Ψ̄ and a synthesis (dual) frame Ψ such
that ΨT Ψ̄ = I . A signal x is analyzed by findings its transform
coefficients via θ = Ψ̄x and synthesized via x = Ψθ. Currently,
provable CS recovery in a frame can be accomplished when either
(A1) the coherence of the frame (the maximum inner product between
any two synthesis frame vectors) is low [1], or (A2) the signal has
a sparse or compressible analysis coefficient vector θ = ΨT x [2].

An important set of CS applications revolves around image
acquisition, where CS has been used to boost the resolution of
digital cameras at exotic wavelengths, reduce the scan time in MRI
scanners, and so on. The sparsifying transforms of choice for image
compression have long been the biorthogonal wavelet bases (BWBs),
which are non-redundant tight frames with the property that the
roles of the analysis and synthesis frames are interchangeable (i.e.,
Ψ̄T Ψ = ΨT Ψ̄ = I). In contrast to orthogonal wavelet bases (OWBs),
BWBs can have symmetrical basis elements that induce less distortion
on image edges when the coefficients θ are sparsified by thresholding.
Symmetrical elements also yield more predictable coefficients, which
boosts compression performance [3].

Unfortunately, BWBs not always satisfy condition (A1). As an
example, the CDF9/7 synthesis frame elements are far from orthog-
onal; indeed the coherence is approximately 1

2
for a 512 × 512

2-D synthesis frame. As a result, attempts at CS recovery using
greedy techniques fails miserably (see Fig. 1(b)). In contrast, since the
analysis and synthesis frames are interchangeable, then the approach
in [2] is equivalent to standard `1-norm minimization, requiring
M = O(K log(N/K) measurements.

In this paper, we will develop a new CS recovery technique for
BWBs based on the notion of structured sparsity [4], which can pro-
vide near-optimal recovery from as few as O(K) CS measurements.
The particular model we apply is the quad-tree sparse/compressible
model of [4], which is prevalent in BWB synthesis coefficient vectors
for natural images. To provide recovery performance guarantees for
signals with structured sparsity in a frame rather than a basis, we
marry the concepts of the D-RIP [2], which requires near-isometry for
signals with sparse synthesis coefficient vectors, with the structured
RIP and RAmP [4] that restricts this near isometry only to signals
with synthesis coefficient vectors that follow the quad-tree sparsity

(a) (b) SNR = 4.60dB (c) SNR = 17.93dB

(d) SNR = 21.54dB (e) SNR = 22.14dB (f) SNR = 23.31dB

Fig. 1. (a) Original Cameraman image. Sparse recovery of the 512 × 512
Cameraman test image from M = 60000 noiselet measurements using: (b)
CDF9/7 BWB and conventional CoSaMP [5] recovery; (c) D8 OWB and
conventional CoSaMP; (d) CDF9/7 BWB and `1-norm minimization; (e) D8
OWB and tree-structured CoSaMP [4]; (f) CDF9/7 BWB and tree-structured
CoSaMP. The CoSaMP-based algorithms use K = 10000.

and compressibility models. The number of measurements needed in
these cases is still M = O(K). This class of signals includes the
majority of the set of natural images, which can be shown to belong
in a sufficiently smooth Besov space.

The benefits of structured sparse recovery in a BWB are clear
from Fig. 1(f), which boasts both a higher recovery signal-to-noise
ratio (SNR) and noticably sharper edges and less ringing than the
D8 OWB recovery in Fig. 1(c,e) or the CDF9/7 BWB recovery in
FIg. 1(d). Our results can be easily extended to more general BWBs
and redundant wavelet representations for smooth signals.
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I. INTRODUCTION

Hidden Markov Trees are used to model statistical dependencies
of wavelet transform coefficients, providing a more accurate recon-
struction as compared to independent coefficient-wise approaches like
the lasso. However, in linear inverse problems such as compressed
sensing and deblurring, the presence of the sensing (or blurring) ma-
trix mixes up the dependencies, and the usual tree-based algorithms
cannot be applied. Past work has dealt with this by resorting to
greedy or suboptimal iterative reconstruction methods [1], [2], [5],
[6]. Based on prior work in modeling DWT coefficients [4], we
make the following key observations: 1) The sparsity patterns are
highly structured, and so independent coefficient-wise thresholding
techniques are suboptimal, and 2) The natural groupings of dependent
coefficients overlap with each other. To overcome these drawbacks,
we propose a modeling technique based on modeling groups of
coefficients, and solve convex optimization problems that arise out
of using appropriate penalties [3].

II. MODELING DWT COEFFICIENTS

We group DWT coefficients based on the observed statistical de-
pendencies. We group parent-child pairs of coefficients across scale,
to account for the inter scale dependencies, and pairs of adjacent
coefficients in the same scale to account for intra-scale dependencies.
Since the groups overlap, we use the recent overlapping group lasso
formulation developed in [3], replicating the overlapping variables to
decouple the groups, and use standard methods such as SpaRSA [7].
Another modeling strategy is to group the coefficients in hierarchies
along paths from the root of the tree to the leaf (See Fig. 1)

Fig. 1. Modeling DWT coefficients into groups. The rings (left) depict the
hierarchical groups. The colored edges (right) depict the parent-child pairs in
groups, and also the siblings in the same scale forming a group.

III. RESULTS

Our contribution is four-fold:
• We model the wavelet coefficients into groups, that mimic their

statistical dependencies
• We use efficient convex optimization techniques to solve the

recovery problem, using overlapping group sparsity penalties
• We develop new bounds for the number of iid gaussian measure-

ments needed for accurate reconstruction of such group sparse
signals

• We experimentally show that our technique performs better
than the standard lasso, on both toy and real images, in both
compressed sensing and image deblurring applications.

As an example of our work, Fig. 2 shows the reconstruction for a
noisy version of the cameraman image (top). AWGN of variance 0.3
was added to the image, after normalization. We used compressive
measurements to recover the image. The image was resized to size
64 × 64, and we used 800 measurements to reconstruct it after
vectorizing (length 4096). Fig 2 (bottom) shows the reconstruction
in a deblurring task, with the original image blurred with a gaussian
filter of variance 1. In the figure, OGlasso refers to the overlap group
lasso with groups as in Fig 1 (right).

(a) lasso reconstruction
(MSE=0.0043)

(b) OGlasso reconstruction
(MSE=0.0031)

(c) lasso deblurring
(MSE=0.010)

(d) OGlasso deblurring
(MSE=0.007)

Fig. 2. Performance on the cameraman image
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I. INTRODUCTION

Consider the problem of estimating a signal/image x from obser-
vations y that follow the usual linear model y = Bx + n, where
B represents a linear observation (e.g., convolution, compressive
sensing) and n is white Gaussian noise. Most frame-based approaches
to regularize this inverse problem fall in one of two classes [1],
[2]: (i) synthesis formulations, which are based on representing the
unknown image as x = Wβ, where W is the synthesis operator of
a (tight) frame, and β is the vector of representation coefficients, to
be estimated by solving the unconstrained convex problem

min
β

1

2
∥y −BWβ∥22 + τ ϕ(β) (1)

(or a constrained version thereof [5]), where ϕ is a convex sparsity-
inducing regularizer (typically, the ℓ1 norm) and τ its weight;
(ii) analysis formulations, which estimate the image itself (not its
representation coefficients) by solving

min
x

1

2
∥y −Bx∥22 + τ ψ(Px), (2)

where P is the analysis operator of a (tight) frame and ψ a convex
sparsity-inducing regularizer (usually, also the ℓ1 norm). If W is an
orthogonal frame, P = W−1, and ϕ = ψ, (1) and (2) are equivalent
[1]; in general, namely for overcomplete frames, they are not equiva-
lent. Although some debate and research have focused on comparing
the two approaches [2], there is no consensus on which of the two
is to be preferred. In this paper, we merge the two formulations,
by proposing a hybrid synthesis-analysis criterion and an alternating
direction algorithm for solving the resulting optimization problem.

II. PROPOSED APPROACH

Our hybrid synthesis-analysis criterion is embodied in an un-
constrained problem, where the regularizer term is the sum of the
synthesis and analysis regularizers from (1) and (2),

min
β

1

2
∥y −BWβ∥22 + τ1 ϕ(β) + τ2 ψ(PWβ), (3)

where W and P are, respectively, the synthesis and analysis operators
of two different tight frames (or of the same tight frame; notice that,
even in this case, PW ̸= I). A different hybrid synthesis-analysis
(called balanced) formulation was recently proposed [3]; however, it
requires the analysis and synthesis operators to be of the same frame,
thus it is less general.

We attack problem (3) using the variant of the alternating direction
method of multipliers (ADMM, [4]) that we have proposed in [5]
for problems involving the sum of an arbitrary number of convex
terms. Each iteration of the algorithm involves applying the Moreau
proximity operators of ϕ and ψ (which, if both are ℓ1 norms, corre-
spond to soft thresholdings), and a least squares minimization, which

is efficiently solved, under the following assumptions: W and P
are, respectively, the synthesis and analysis operators of two Parseval
frames (WWH = I and PHP = I), for which fast transforms
exist; B models a periodic convolution, a subsampling (i.e., we have
an inpainting problem), or a partially observed Fourier transform (i.e.,
one of the classical compressive imaging problems). Finally, we show
that sufficient conditions for convergence are satisfied.

III. EXPERIMENTS AND CONCLUSIONS

We compare the hybrid formulation with pure synthesis and analy-
sis criteria (solved via the algorithm from [6]), on several benchmark
image deconvolution and reconstruction problems (see details of the
problems in [6]). For W, we use a 4-level redundant Haar frame; for
P, we adopt a 4-level redundant Daubechies-4 frame. Both ϕ and
ψ are ℓ1 norms. To sidestep the issue of adjusting the regularization
weights, we simply hand-tune them for maximal ISNR (improvement
in SNR); of course, this is inapplicable in practice. Since there is
no space in this extended abstract for detailed results, we present a
summary of the conclusions drawn from the experiments:
• The analysis and hybrid approaches clearly outperform the

synthesis approach in terms of ISNR.
• The synthesis approach reaches its best ISNR faster (by a factor

of 5 ∼ 10) than the analysis approach.
• The hybrid approach mildly outperforms the analysis approach

in terms of ISNR.
• The hybrid approach reaches its best ISNR faster (by a factor

of 2 ∼ 3) than the analysis approach.
Summarizing, the hybrid approach (efficiently handled by the pro-
posed algorithm) yields the best speed/ISNR trade-off: it is preferable
to the pure analysis criterion, since it is faster; it is preferable over the
synthesis criterion, as it achieves a clearly better ISNR. Of course,
these conclusions are based on a limited set of experiments; more
work is needed to fully assess the relative merits of these approaches.
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Abstract—In the past decade there has been a great interest in
a synthesis-based model for signals, based on sparse and redundant
representations. This work considers an alternative analysis-based model,
where an analysis operator multiplies the signal, leading to a cosparse
outcome. We consider this analysis model, in the context of a generic
missing data problem. Our work proposes a uniqueness result for the
solution of this problem, based on properties of the analysis operator and
the measurement matrix. A new greedy algorithm for solving the missing
data problem is proposed along with theoretical study of the success of
the algorithm and experimental results.

I. INTRODUCTION

Given a set of incomplete linear observation y = Mx0 ∈ Rm

of a signal x0 ∈ Rd, m < d, the assumption that x0 admits a
sparse representation z0 in some synthesis dictionary D is known
to be of significant help in recovering the original signal x0. Indeed,
it is now well understood that under incoherence assumptions on
the matrix MD, one can recover vectors x0 with sufficiently sparse
representations by solving the optimization problem:

x̂S := Dẑ; ẑ := arg min
z
‖z‖τ subject to y = MDz (1)

for 0 ≤ τ ≤ 1.
An alternative to (1) which has also been used successfully in

practice is to consider the analysis `τ -optimization [2], [6], [7]:

x̂A := arg min
x
‖Ωx‖τ subject to y = Mx, (2)

where Ω : Rd → Rp is an analysis operator. Typically the
dimensions are m < d ≤ p, n.

The fact that z0 contains few zeros, i.e., is sparse may be
thought of as the principal reason why one can recover the so-
called sparse signals via (1). We show that while the optimization
(2) has similar look to (1), a different model, which we name the
cosparse analysis model, is more closely linked to (2) than the sparse
synthesis model. In particular, contrary to the sparse model, we are
more interested in the signals x0 whose analysis representation Ωx0

contains many zeros. We call such signals cosparse and the quantity
` := p− ‖Ωx0‖0 the cosparsity.

II. UNIQUENESS

Based on the existing work [1], [3], we establish [4] the uniqueness
of cosparse signals in the context of linear inverse problems above.
The result we have derived has simple forms for two particular classes
of analysis operators: Ω that is in general position, which means
that the rows of Ω has no non-trivial linear dependencies, and the
popular 2D TV analysis operators Ω that consists of all the vertical
and horizontal one-step differences in a 2D image. For these two
types of Ω, we have:

The authors acknowledge the support by the European Community’s FP7-
FET program, SMALL project, under grant agreement no. 225913.

Fig. 1. SNR vs Number of radial observation lines in the Shepp Logan
phantom recovery. The line for GAP is clipped because the SNR was over
150 from 12 radial lines.

Proposition 1. 1) Let Ω be in general position. Then, the problem
y = Mx has at most one `-cosparse solution if and only if m ≥
2(d− `).

2) Let Ω be the 2D TV analysis operator. Then, the problem y =
Mx has at most one `-cosparse solution if m+ ` ≥ 2d.

III. ALGORITHM, THEORY, AND EXPERIMENTAL RESULT

With the uniqueness property established, we propose a new
greedy algorithm which aims to recover cosparse signals based on
incomplete linear observations. This algorithm, named the Greedy
Analysis Pursuit (GAP), may be considered as the counterpart of the
Orthogonal Matching Pursuit (OMP) in the sparse model. However,
the GAP tries to detect the elements outside the locations of the
zeros of analysis representations, this way carving its way towards
the index set of zeros in the end.

We then provide a theoretical condition that guarantees the success
of both the GAP and the analysis `1-minimization in cosparse signal
recovery. Finally, we run some synthetic experiments to demonstrate
the effectiveness of the proposed algorithm. Interestingly, we observe
that GAP performs better than the analysis `1-minimization in the
given tasks. In particular, Fig. 1 shows SNR vs the number of radial
observation lines in the Shepp Logan phantom recovery problem.
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Sampling theorems on the sphere state that all the information of
a continuous band-limited signal on the sphere may be contained in
a discrete set of samples. For an equiangular sampling of the sphere,
the Driscoll & Healy (DH) [1] sampling theorem has become the
standard, requiring ∼ 4L2 samples on the sphere to represent exactly
a signal band-limited in its spherical harmonic decomposition at L.
Recently, a new sampling theorem on an equiangular grid has been
developed by McEwen & Wiaux (MW) [2], requiring only ∼ 2L2

samples to represent exactly a band-limited signal, thereby redefining
Nyquist rate sampling on the sphere. No sampling theorem on the
sphere reaches the optimal number of samples suggested by the L2

dimension of a band-limited signal in harmonic space (although the
MW sampling theorem comes closest to this bound). A reduction
by a factor of two in the number of samples required to represent a
band-limited signal on the sphere between the DH and MW sampling
theorems has important implications for compressed sensing.

Compressed sensing on the sphere has been studied recently for
signals sparse in harmonic space [3], where a discrete grid on the
sphere is not required. However, for signals sparse in the spatial
domain (or in its gradient) a discrete grid on the sphere is essential.
A reduction in the number of samples of the grid required to represent
a band-limited signal improves both the dimensionality and sparsity
of the signal, which in turn affects the quality of reconstruction.

We illustrate the impact of the number of samples of the DH
and MW sampling theorems with an inpainting problem, where
measurements are made in the spatial domain (as dictated by many
applications). A test signal sparse in its gradient is constructed from a
binary Earth map, smoothed to give a signal band-limited at L = 32.
We first solve the total variation (TV) inpainting problem directly on
the sphere:

x? = arg max
x

‖x‖TV such that ‖y − Φx‖2 ≤ ε , (1)

where M noisy measurements y of the signal x are made. The mea-
surement operator Φ represents a random masking of the signal. The
TV norm ‖ · ‖TV is defined to approximate the continuous TV norm
on the sphere and thus includes the quadrature weights of the adopted
sampling theorem, regularising the gradient computed on the sphere.
However, as discussed, the dimensionality of the signal x is optimal
in harmonic space. Consequently, we reduce the dimensionality of
our problem by recovering the harmonic coefficients x̂ directly:

x̂? = arg max
x̂

‖Ψx̂‖TV such that ‖y − ΦΨx̂‖2 ≤ ε , (2)

where Ψ represents the inverse spherical harmonic transform; the
signal on the sphere is recovered by x? = Ψx̂?. For this problem the
dimensionality of the signal directly recovered x̂ is identical for both
sampling theorems, however sparsity in the spatial domain remains
superior (i.e. fewer non-zero values) for the MW sampling theorem.

This work is supported by CIBM of the Geneva and Lausanne Universities,
EPFL, and the SNSF, Leenaards and Louis-Jeantet foundations.
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Fig. 1. Reconstruction performance for the DH and MW sampling theorems

(a) Ground truth (b) DH reconstruction (c) MW reconstruction

Fig. 2. Reconstructed Earth topographic data for M/L2 = 1/2

Reconstruction performance is plotted in Fig. 1 when solving the
inpainting problem in the spatial (1) and harmonic (2) domains, for
both sampling theorems (averaged over ten simulations of random
measurement operators and independent and identically distributed
Gaussian noise). Strictly speaking, compressed sensing corresponds
to the range M/L2 < 1 when considering the harmonic representa-
tion of the signal. Nevertheless, we extend our tests to M/L2 ∼ 2,
corresponding to the equivalent of Nyquist rate sampling on the MW
grid. In all cases the superior performance of the MW sampling
theorem is evident. In Fig. 2 we show example reconstructions, where
the superior quality of the MW reconstruction is again clear.

Although recovering the signal in the harmonic domain is more
effective, it is also computationally more demanding. At present we
are thus limited to low band-limits. To solve the convex optimisation
problem in the harmonic domain both the inverse spherical harmonic
transform and its adjoint operator are required. A fast inverse spheri-
cal harmonic transform exists [2], from which a fast adjoint operator
follows directly. The application of fast inverse and adjoint operators
is the focus of ongoing research and will allow compressed sensing
problems on the sphere to be tackled effectively at much higher band-
limits.
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Consider a linear dynamic system described by the update
equations xt = Ψtxt−1 + ut, yt = Φtxt + vt. Here,
xt ∈ Rn represents the state vector of the system, yt ∈ Rm

denotes the measurement vector, ut ∈ Rn and vt ∈ Rm

are Gaussian innovation vectors with ut ∼ N (0,Σu) and
vt ∼ N (0,Σv), respectively. The subscript t = 1, 2, · · ·
describes the time instances at which the signal is observed.
Suppose that the statistics of xt−1 are known, and given
by xt−1 ∼ N (x̂t−1,Σt−1). Given yt, Ψt and Φt, the
MAP estimate of xt, denoted by x̂t, coincides with the
corresponding MMSE estimate.

Now suppose that one has prior information that xt is K-
sparse. The MAP estimator that takes the sparsity assumption
into consideration is given by

x̂t = arg max
x: ‖x‖0≤K

pXt|Yt,Xt−1
(x|yt, x̂t−1) ,

where the pseudo-norm ‖·‖0 counts the number of non-zero
entries of its argument. Let At = 2

(
Σ−1

u + ΦT
t Σ−1

v Φt

)
, bt =

−2
(
Σ−1

u Ψtx̂t−1 + ΦT
t Σ−1

v yt

)
, and ft (x) = 1

2xT Atx +
bT

t x. It can be verified that the sparse MAP estimator is
equivalent to

x̂t = arg min
x: ‖x‖0≤K

ft (x) . (1)

At the first glance, the Gaussian sparse modelling looks ar-
bitrary. The common strategy for dynamic CS usually involves
certain sparsity-promoting distributions, which often result in
reconstructions with high computational complexity and week
performance guarantees. Note that Gaussian modelling has
been successfully applied to dynamic signal processing, and
that in many applications, e.g. MRI imaging, the dynamic
signal at each time instance is sparse. Our model combines
the advantages of both Gaussian and sparse modelling and
renders good performance guarantees.

It is NP-hard to solve the optimization problem (1). We
therefore propose a practical greedy algorithm to solve (1). It is
based on the well-known subspace pursuit (SP) algorithm for
standard compressive sensing, and therefore termed SP-MAP.
The details are described in Algorithm 1. It can be proved
that the proposed SP-MAP algorithm coincides the standard
SP algorithm when Σu = σ2

uI , Σv = I and σ2
u → ∞. The

performance guarantees of the proposed SP-MAP algorithm
are based on RIP like conditions and will be detailed in the
full version of this abstract.

We performed extensive numerical simulations to test our
approach for K-sparse dynamical signals. In order to generate
a sparse Gaussian dynamic signal, we use the model xt =
Tk (Φtxt−1 + ut) , where the nonlinear mapping TK (x) pro-
duces a vector that agrees with x in the K largest mag-
nitude entries, and has all other coordinates equal to zero.

Algorithm 1 The SP-MAP Algorithm
Let `max be the maximum iterations at each time instance. Let
x̂0 = 0. At time instance t, perform the following operations.
Initialization:

1) Define x′t = Ψtx̂t−1, A = 2
(
Σ−1

u + ΦT
t Σ−1

v Φt

)
and

b = −2
(
Σ−1

u x′t + ΦT
t Σ−1

v yt

)
.

2) Let ` = 0. Let x̂t = −A−1b. Let K be the set of
the K indices corresponding to the largest Ai,i |x̂t,i|2’s,
i ∈ [n]. Define x̂

(`)
t such that x̂

(`)
t,Kc = 0 and x̂

(`)
t,K =

−A−1
K,KbK.

3) Let x̂t = x̂
(`)
t . Compute f (`) = 1

2 x̂T
t Ax̂t + bT x̂t.

Iterations:
1) Let ` = `+ 1.
2) For every i /∈ K, compute ∆i =

(〈x̂t,K,AK,i〉+ bi)
2
/Ai,i. Let K∆ be the set of

the K indices corresponding to the largest ∆i’s, i ∈ Kc.
3) Let K̃ = K

⋃
K∆. Define x̃t such that x̃t,K̃c = 0 and

x̃t,K̃ = −A−1

K̃,K̃bK̃. For every i ∈ K̃, compute ∆i =

Ai,ix̃
2
t,i.

4) Let K be the set of the K indices corresponding to the
largest ∆i’s, i ∈ K̃. Define x̂

(`)
t such that x̂

(`)
t,Kc = 0 and

x̂
(`)
t,K = −A−1

K,KbK. Compute f (`) = 1
2 x̂T

t Ax̂t + bT x̂t.
5) If f (`) > f (`−1), quit the iterations.
6) Let x̂t = x̂

(`)
t . If ` ≥ `max, quit the iterations.

Otherwise, go to Step 1 for the next iteration.
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Figure 1. Comparison of reconstruction algorithms.

Figure 1 compares the proposed SP-MAP algorithm with
other algorithms designed for dynamic CS. According to the
simulation results, the SP-MAP algorithm outperforms others
and it performs very close to the genie-aided approach when
the number of samples per time instance is sufficient.

References are omitted due to the space limitation.
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Simultaneous Estimation of Sparse Signals and
Systems at Sub-Nyquist Rates

Hojjat Akhondi Asl and Pier Luigi Dragotti

EXTENDED ABSTRACT

In this work, we consider the problem of system iden-
tification based on a sparse sampling system. Unlike stan-
dard techniques for system identification which require the
sampling rate to be at or above the Nyquist rate, we use
sparse sampling techniques to identify the system at sub-
Nyquist sampling rates. We propose a novel algorithm for
simultaneous estimation of sparse signals along with system
identification using the theories of finite rate of innovation
(FRI) sampling [3], [1]. Specifically, we will divide the esti-
mation problem into two stages where we first assume that the
input sparse signal is known, so that the problem simplifies to
a system identification problem only and then in the second
stage, we consider the problem of simultaneously estimating
the input sparse signal and also the linear system, known
as blind system identification, and propose a novel iterative
algorithm for that setup. We will show that, based on our
numerical simulations, the solution to the second problem is
normally convergent.

System Identification with Known Input Signal

For this scenario, as shown on Figure 1, a two-channel
system is proposed for sampling the input sparse signal with
and without the unknown system. In the figure, g(x) represents
the known input signal, ψ(x) represents the unknown system
to be identified, φ(x) represents the pre-defined sampling
kernel which we assume to be purely imaginary E-splines [2]
in both channels, T represents the sampling interval and sk

represent the samples. In the first channel, the input signal is

Fig. 1. System identification setup with known input signal

directly sampled with the kernel φ(x) and given the obtained
samples which we denote with sSIG

k , the exponential moments
of the input signal, denoted with τSIG

m , are calculated [1].
In the second channel, the same input signal is fed through
the unknown system ψ(x) and then sampled with the same
sampling kernel. Same as in the first channel, given the
samples sSY S

k , the exponential moments τSY S
m are calculated.

With purely imaginary E-spline sampling kernel employed,
by dividing the exponential moments obtained from the two
channels, it can be shown that the Fourier transform of the
unknown function can be obtained. Given the partial Fourier

The authors are with the C&SP Group, Electrical and Electronic En-
gineering, Imperial College London, Exhibition Road, London SW7 2AZ,
England. Tel: +44 (0) 20 759-46192. E-mails: {hojjat.akhondi-asl03 and
p.dragotti@imperial.ac.uk}.

transform of the unknown system, there will be an inverse
problem to solve for the unknown parameters of the unknown
system. In our work, we show for cases such as finite impulse
response (FIR) filters (e.g. acoustic room impulse response
estimation or line echo cancelation), B-splines (e.g. camera
lens calibration) and E-splines (e.g. estimation of the electronic
components of a finite order electronic circuit), we can solve
the above inverse problem and identify the system. It should
be pointed out that the above method works regardless of the
structure of the input signal.

Blind System Identification

When both the signal and the system are unknown, the
previous solution cannot be used directly and the problem is
in general more involved. However, a recursive version of the
discussed method can be utilized to estimate both the input
sparse signal and the unknown system.

(a)

(b)

Fig. 2. The setup proposed for recursive estimation

In our work we assume that the input sparse signal is
a stream of Diracs with unknown locations and amplitudes.
As shown in Figure 2(a), the unknown input signal is fed
to the unknown system ψ(x) and then is sampled with our
pre-specified purely imaginary E-spline sampling kernel. The
annihilating filter method [3], [1] is directly applied to the ex-
ponential moments τ0

m and an initial estimate of the input sig-
nal is obtained, denoted as ĝ(x) (Figure 2(b)). The estimated
signal ĝ(x) is recursively fed back to sampling kernel and its
corresponding updated exponential moments are calculated at
each recursion, denoted with τupd

m . By dividing the updated
exponential moments τupd

m and the initial measurements τ0
m,

an estimate of the Fourier transform of the unknown system is
obtained. From this estimate, the unknown parameters of the
unknown system are estimated and the measurements τupd

m

are re-calculated. Our empirical results show that by applying
the above method recursively, the estimations converge to the
actual input signal g(x) and the unknown function ψ(x).
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Compressive sensing results have allowed accurate recon-
struction of highly undersampled signals by leveraging known
signal structure [1]. Recently, there has been a push to extend
these results into an area of great interest for a large number of
fields: the estimation of dynamically changing signals [2]–[5].
If known, or even partially known dynamics are transforming a
state, then past observations should be able to be incorporated
into the estimation process of a state at any given time in
order to increase the accuracy of the estimation. Typically a
dynamical state xn ∈ RN is assumed to evolve with some
approximately known dynamics fn(·) as

xn = fn(xn−1) + νn, (1)

where νn is called the innovations and can be interpreted as
the limitation of our knowledge of the system dynamics. Given
a set of linear measurements at each iteration,

yn = Gnxn + εn, (2)

where yn, εn ∈ RM are the measurements and measurement
error, respectively, we wish to estimate the underlying evolving
state. More specifically, we wish to recover the current state
at each time step as best as possible given all previous
measurements. In previous work [4], we explore a framework
in which propagating first order statistics and utilization of
appropriate `1 norms allow for accurate estimation when the
state, the innovations or both are sparse.

In least-squares based state estimation, however, higher order
statistics are propagated in order to obtain more accurate esti-
mates at each iteration. For instance in the case of the Kalman
filter, which arises when under assumptions of linearity in the
modeled dynamics and Gaussian statistics in the innovations
and measurement noise, a covariance matrix is propagated
along with the mean to obtain an optimal estimate. In this
work, we expand on the previously introduced framework in
order to include similar higher order statistics by introducing a
hierarchical model inspired by the reweighted `1 sparse infer-
ence method first proposed in [6]. We use previous information
in a way similar to [7] in that we are leveraging the weightings
Λ = diag(λi) in the optimization

x̂ = arg max
x
‖y −Gx‖22 + ‖Λx‖1 (3)

in order to propagate information about our prediction and our
confidence thereof of the next state. By using a Gamma prior
over each element of λ in a Bayesian setting, we determine
the expectation-maximization (EM) update equations in order
to determine xn and λn at each iteration to be

λt[i] =
2

|xt−1[i]|+ fn(xn−1)[i] + β
(4)

xt
n = arg min

x

[
‖yn −Gnx‖22 +

∑
i

λt[i]|x[i]|

]
(5)

where β is a small positive value which ensures stability in the
λ values and t indicates the EM iteration. The EM algorithm
run to convergence, which typically occurs for 10 ≤ t ≤ 30.

We show improvements on simulated data using the adap-
tation of the second order variables over similar first order
estimation programs in both the steady state relative mean
squared error (rMSE) and the robustness. For example at
sampling rates below CS recovery limits, steady state errors can
be reduced from 2.48% using first order methods to 0.67% with
the re-weighted model. Additionally, up to 30% of the signal
sparsity locations can be erroneous and the re-weighted model
continues to outperform both time-independent basis pursuit
de-noising as well as the first order models.
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The advent of the Compressed Sensing (CS) paradigm revitalizes
the way signals are acquired. In a nutshell, CS shows how sparse
or compressible signals in a given basis can be reconstructed from
fewer linear measurements than the ambient dimension N of the
signal space [1], [5]. The gist of this approach lies in the use of a
sensing matrix sufficiently incoherent from the signal sparsity basis.
This happens with high probability for a large class of random matrix
constructions as soon as the number of measurements M is higher
than “few multiples” of the signal sparsity K. For instance, for
Random Gaussian matrices, when M = O(K logN/K).

As a matter of fact, actual signal acquisition systems are often (if
not always) corrupted by noise with various distribution laws (e.g.,
Gaussian, Poisson, uniform or impulsive noises). Sensing techniques
relying on CS cannot escape this, which motivates the study of CS
reconstruction robustness in the presence of such perturbations.

In this work, we consider the corruption of CS measurements by
heteroscedastic noise following a Generalized Gaussian Distribution
(GGD). More precisely, the sensing model of a sparse (or compress-
ible) signal x ∈ RN in the canonical basis is

y = Φx+ n, (1)

where Φ ∈ RM×N stands for the sensing matrix, and the noise
n ∈ RM follows a (central) GGD. That is, ni ∼ GGD(0;αi, p) ∝
exp−|(t/αi)|p, for a shape parameter p > 1 and a scale αi > 0.
This extends [4] where only the case αi = α > 0 is analyzed.

In order to reconstruct the signal, we propose an adaptation of the
Basis Pursuit DeNoise (BPDN) program [5] for GGD noises called
Basis Pursuit for Generalized Gaussian Noise (BPGGN):

x∗ = arg min
u

‖u‖1 s.t. ‖y −Φu‖p,w 6 εp,w. (BPGGN)

This solver proceeds as before by minimizing the (sparsity promoting)
`1-norm of the signal under a weighted `p,w-norm fidelity term (with
p > 1) adjusted so that εpp,w provides an upper bound (with high
probability) on ‖n‖pp,w :=

P
i |wini|

p. Our implicit objective is
to adjust the weights w = (w1, · · · , wM ) ∈ RM+ to the noise
characteristics for minimizing the final reconstruction error.

For p = 2, w = 1 := (1, · · · , 1), BPGGN reduces to BPDN
which is `2 − `1 instance optimal when Φ satisfies the Restricted
Isometry Property [5]. In other words, if for some normalization µ >
0, µ‖Φv‖ is “close” to ‖v‖ for any K-sparse vector v ∈ ΣK = {u :
#{i : ui 6= 0} 6 K}, and if the signal x is (with high probability)
a feasible point of the BPDN constraint, then

‖x∗ − x‖ 6 Ce0(x) +D ε2,1/µ.

In this error bound, C > 0 and D > 0 are dependent on Φ and
K only, e0(x) = ‖x − xK‖1/

√
K and xK is the best K-term

approximation of x [5].

Generalizing what is described in [4], it is possible to characterize
the BPGGN stability for any w ∈ RM+ and p > 2 if the sensing
matrix is well behaved with respect to the `p,w-norm. Specifically,
we ask the sensing matrix Φ to respect the generalized Restricted
Isometry Property RIP(`p,w, `2|K, δ, µ) at order K ∈ N, radius 0 6
δ < 1 and for a normalization µ > 0. That is, for all x ∈ ΣK ,

(1− δ)1/2 ‖x‖ 6 1
µ
‖Φx‖p,w 6 (1 + δ)1/2 ‖x‖. (2)

Notice that RIP(`2,1, `2|K, δ, µ) is the common RIP [3], [5].

We can prove that, with very high (controllable) probability, a
random matrix Φ ∼ NM×N (0, 1), i.e., with Φij ∼iid N (0, 1),

is RIP(`p,w, `2|K, δ, µ) as soon as M2/p = O(K logN/K) and
µ = E‖ξ‖p,w, for ξ ∼ NM×1(0, 1).

We also show that if Φ is a RIP(`p,w, `2|s, δs, µ) matrix for s ∈
{K, 2K, 3K} and 2 6 p < ∞, and if εp,w guarantees that x is a
feasible point of the BPGGN constraint, then

‖x∗ − x‖ 6 Ap e0(K) + Bp µ
−1εp,w, (3)

for values Ap(Φ,K) =
2(1+Cp−δ2K)

1−δ2K−Cp
, Bp(Φ,K) =

4
√

1+δ2K

1−δ2K−Cp
,

Cp = O
`p

(δ2K + δ3K)(p− 2)
´

as p� 2 and Cp = δ3K +O(p−
2) as p→ 2.

This results is interesting for at least the following two situations.
First, in the case p = 2, for heteroscedastic Gaussian noise variance
σ2
i = α2

i /2, (3) implies that the reconstruction error may be reduced
through “cleaning” n by setting wi = 1/σi. For a Gaussian matrix
Φ ∼ NM×N (0, 1), we have µ = E‖ξ‖2,w ' ‖w‖. Without
cleaning (i.e., w = 1), the term µ−1ε2,w in (3) is close to
(
P
i σ

2
i )1/2/

√
M . Setting wi = 1/σi, wini ∼ N (0, 1) and we

get µ−1ε2,w '
√
M/(

P
i σ

−2
i )1/2. This second quantity is always

smaller than the first. Indeed, M/(
P
i σ

−2
i ) = (

P
i σ

−2
i /M)−1 6P

i(σ
−2
i )−1/M =

P
i σ

2
i /M since the function 1/t is convex on

R+ and
P
i 1/M = 1.

Second, (3) also applies to the context of non-uniform measure-
ment quantization [2], that is, when

y = Q[Φx] = Φx+ n,

where, for each vector component, the scalar quantizer Q[t] maps
t ∈ R on the level τk ∈ R iff t belongs to the quantization
bin Rk = [tk, tk+1) 3 τk, with thresholds t0 < t1 < · · · .
When an oracle tells us on which side of each level an unquantized
measurement is, we show that the noise n in (1), which is uniform
on each bin, can be approximated as a (half) GGD noise with
arbitrary high p. However, since a matrix Φ ∼ NM×N (0, 1)
is RIP(`p,w, `2|K, δ, µ) if M2/p = O(K logN/K), a trade-off
must be found between perfect noise modeling and reconstruction
controllability. If this RIP holds, writing ki as the bin label of (Φx)i,
setting wi = 1/|τki − tki+1| if (Φx)i > τki and wi = 1/|τki − tki |
otherwise (thanks to the oracle), we found that

µ−1εp,w 6 C
`
ρp
p
p+ 1

´−1
. (4)

assuming M−1/p ‖w‖p > ρp for large M (with ρp > mini wi).

Implementing BPGGN with a monotone operator splitting method
[6] and making the weights sign-sensitive, we observe numerically
this O(1/

√
p+ 1) error reduction when CS measurements are quan-

tized with a Lloyd-Max quantizer and without invoking any oracle.
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Abstract—We propose auniversal and efficient compressive sampling
strategy based on the use of a spread spectrum technique. Themethod
essentially consists in a random pre-modulation of the signal of interest
followed by projections onto randomly selected vectors of an orthonormal
basis. The effectiveness of the technique is induced by a decrease of
coherence between the sparsity and the sensing bases. The sensing
scheme isuniversal for a family of sensing bases in the sense that the
number of measurements needed for accurate recovery is optimal and
independent of the sparsity matrix. It is alsoefficient as sensing matrices
with fast matrix multiplication algorithms can be used. These results are
confirmed experimentally through analyses of the phase transition of the
ℓ1-minimization problem.

I. SPREAD SPECTRUM TECHNIQUE

Let x ∈ C
N be ans-sparse digital signals in an orthonormal basis

Ψ = (ψ1, ...,ψN ) ∈ C
N×N and α ∈ C

N be its decomposition
in this basis:α = Ψ

∗x. The spread spectrum technique consists
in a pre-modulation of the original signalx by a wide-band signal
c = (cl)16l6N ∈ C

N , with |cl| = 1 and random phases, and a
projection ontom randomly selected vectors of another orthonormal
basisΦ = (φ1, ...,φN) ∈ C

N×N [2]. The indicesΩ = {l1, . . . , lm}
of the selected vectors are chosen independently and uniformly at
random from{1, . . . , N}. We denoteΦ∗Ω them × N matrix made
of the selected rows ofΦ∗. The measurement vectory ∈ C

m thus
reads as

y = AΩα with AΩ = Φ
∗

ΩCΨ ∈ C
m×N . (1)

In the above equation, the matrixC ∈ C
N×N stands for the diagonal

matrix associated to the sequencec. Finally, we aim at recoveringα
by solving theℓ1-minimization problem

arg min
ᾱ∈CN

‖ᾱ‖1 subject toy = AΩᾱ. (2)

II. REDUCING THE MUTUAL COHERENCE BY PRE-MODULATION

In the absence of pre-modulation, i.e. whenC is reduced to the
identity matrix, the compressive sampling theory already demon-
strates that a small numberm ≪ N of random measurements
is sufficient for an accurate and stable reconstruction ofα [1].
However, the recovery conditions depend on the mutual coherence
µ = max16i,j6N |〈φi,ψj〉| betweenΦ and Ψ. The performance is
optimal when the bases are perfectly incoherent, i.e.µ = N−1/2, and
unavoidably decreases whenµ increases.

The spread spectrum technique proposed in this work significantly
reduces the mutual coherenceµ towards its optimal value [2]. In
the presence of a digital pre-modulation by a random Rademacher
or Steinhaus sequencec ∈ C

N , the mutual coherenceµ =
max16i,j6N |〈φi,Cψj〉| is essentially bounded by themodulus-
coherenceβ2 (Φ,Ψ) = max16i,j6N

PN
k=1 |φ

∗

kiψkj |
2. Indeed, we

can show that the mutual coherenceµ satisfies

N−1/2
6 µ 6 β (Φ,Ψ)

p

2 log (2N2/ǫ), (3)

with probabilty at least1− ǫ.
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sities and EPFL, by the Leenaards and Louis-Jeantet foundations, by the
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Fig. 1. Phase transition of theℓ1-minimization problem for sparse signals
in the Fourier basis and random selection ofFourier (first and third panels)
or Hadamard (second and fourth panels) measurements without and with
random modulation. The dashed green line indicates the weakphase transition
of Donoho-Tanner [3] and the color bar goes from white to black indicating a
probability of recovery from0 to 1. The domain of recovery becomes optimal
with the spread spectrum technique.

Definition 1. (Universal sensing basis) An orthonormal basisΦ ∈
C

N×N is called a universal sensing basis if all its entriesφki, 1 6

k, i 6 N , are of equal complex magnitude.

For universal sensing basesΦ, e.g. the Fourier, Hadamard, or
noiselet transform, we haveβ (Φ,Ψ) = N−1/2 whatever the sparsity
matrix Ψ. The mutual coherenceµ is thus equal to its optimal value,
up to a logarithmic factor, whatever the sparsity matrix considered!

III. SPREAD SPECTRUM UNIVERSALITY

Theorem 1. Let c ∈ C
N , with N > 3, be a random Rademacher

or Steinhaus sequence andy satisfying equation (1). For universal
sensing basesΦ ∈ C

N×N and for a universal constantC > 0, if m >

C s log8(N), thenα is the unique minimizer of theℓ1-minimization

problem (2) with probability at least1−O
“

N− log3(N)
”

.

For universal sensing bases, the spread spectrum techniqueis thus
universal: the recovery condition does not depend on the sparsity basis
and the number of measurements needed to reconstruct sparsesignals
is optimal in the sense that it is reduced to the sparsity level s. The
experimental study of the phase transitions of theℓ1-minimization
problem confirms this result (see Figure 1). The spread spectrum
technique is alsoefficient as the pre-modulation only requires a
sample-by-sample multiplication betweenx and c and fast matrix
multiplication algorithms are available for several universal sensing
bases such as the Fourier, Hadamard, or noiselet bases.

IV. CONCLUSION

We presented auniversal and efficient compressive sampling
strategy based on spread spectrum. For applications such asradio
interferometry and MRI, this technique is of great interestto optimize
the number of measurements needed for an accurate recovery [4], [5].
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Abstract—Many of the theorems in Compressed Sensing (CS) rely upon
the linear operator having suitable bounds on its restricted isometry
constants (RIC). Due to the intractability of RICs for deterministic
matrices, the focus has been on probabilistic bounds. This work is an
effort to determine as accurate as possible bounds for Gaussian random
matrices. The outcome is presented here in the form of improved RIC
bounds. In addition, we present asymptotic approximationsof the RIC
bounds from which we deduce sampling theorems consistent with what
is found in CS literature.

I. I NTRODUCTION

For a matrixA of sizen×N , the upper and lower RICs ofA, Uk

and Lk respectively, over allk−sparse vectors,x, are the smallest
Uk andLk that satisfy, [2], [3],

(1− Lk)‖x‖
2
2 ≤ ‖Ax‖22 ≤ (1 + Uk)‖x‖

2
2. (1)

Unfortunately, computing the RICs of a matrixA is in general NP-
hard. Consequently, the research community is actively computing
probabilistic bounds for various random matrix ensembles.Amongst
other approaches, our work aims at computing accurate RICs for
Gaussian random matrices, in part as a model for i.i.d. mean zero
ensembles, [1], [2], [4].

II. I MPROVED RIC BOUNDS

The first set of RIC bounds for the Gaussian ensemble were derived
in [4] using a union bound over all

(
N

k

)
submatrices and bounding

the singular values of each submatrix using concentration of measure
bounds. This was improved in [2] by similarly using a union bound
over all

(
N

k

)
submatrices, but with more accurate bounds on the

probability density function of Wishart matrices. We achieved further
improvement by grouping submatrices with overlapping support sets,
say, AK and AK′ with |K ∩ K′| ≫ 1, for which we expect the
singular values to be highly correlated.

These bounds where derived in thelinear-growth asymptotics:

k/n → ρ and n/N → δ for (δ, ρ) ∈ (0, 1)2 as (k, n, N)→∞. (2)

Our improved bounds are stated in Theorem 2.1 and their comparison
to bounds of [2],UBCT and LBCT , and to empirically observed
lower bounds,U(k, n, N) andL(k, n, N), are shown in Figure 1.

Theorem 2.1: Let A be a matrix of sizen×N whose entries are
drawn i.i.d. fromN (0, 1/n). For any fixedǫ > 0, in the linear-growth
asymptotic,

P(Lk < L(δ, ρ) + ǫ)→ 1 and P(Uk < U(δ, ρ) + ǫ)→ 1 (3)

exponentially inn.

Fig. 1. As a function ofρ and taken overδ ∈ [0.05, 0.95] for eachρ; Left
panel: sharpness ratios,U(δ,ρ)

U(k,n,N)
and L(δ,ρ)

L(k,n,N)
; Right panel: improvement

ratios, U
BCT (δ,ρ)
U(δ,ρ)

and L
BCT (δ,ρ)
L(δ,ρ)

.

III. A SYMPTOTICS OFRIC BOUNDS

We asymptotically approximated the RIC bounds with simpler
functions for small values ofδ and ρ, close to 0. Naturally three
cases lend themselves to these kind of analysis: (i) fixingρ and
letting δ → 0; (ii) fixing ρ and lettingδ → 0; and (iii) settingρ
as a function ofδ parameterize byγ and letting bothρ, δ → 0. The
third case, being the most interesting, leads to the following theorem.

Theorem 3.1: Let ργ(δ) = [−γ log (δ)]−1 and let Ũ (δ, ργ(δ))

and L̃ (δ, ργ(δ)) be the approximations ofU(δ, ρ) and L(δ, ρ)
respectively. For a fixedγ asδ → 0,

Ũ (δ, ργ(δ)) =
[
−2ρ log

(
δ2ρ3

)] 1

2 −
2

3
ρ log

(
δ2ρ3

)
; (4)

L̃ (δ, ργ(δ)) =
[
−2ρ log

(
δ2ρ3

)] 1

2 +
2

3
ρ log

(
δ2ρ3

)
. (5)

Consequent to our good asymptotic approximations the following
sampling theorem can be deduced from Theorem 3.1.

Corollary 3.2: Given a sensing matrix,A, of sizen×N whose en-
tries are drawn i.i.d. fromN (0, 1/n), in the limit asn/N → 0 a suf-
ficient condition for recovery for CS algorithms isn ≥ γk log(N/n)
measurements withγ = 36 for l1-minimization, γ = 93 for IHT,
γ = 272 for Subspace Pursuit andγ = 365 for CoSaMP.

REFERENCES

[1] B. Bah and J. TannerImproved bounds on restricted isometry constants
for gaussian matrices, SIAM J. on Matrix Analysis, Vol. 31(5) (2010)
2882-2898.

[2] J. D. Blanchard, C. Cartis, and J. Tanner,Compressed Sensing: How sharp
is the RIP?, SIAM Review, Vol. 53(1) (2011) 105-125.

[3] E. J. Candès,The restricted isometry property and its implications for
compressed sensing, C. R. Math. Acad. Sci. Paris, Vol. 346(9-10)
(2008) 589-592.

[4] E. J. Candès and T. TaoDecoding by linear programming, IEEE Trans.
Inform. Theory, Vol. 51(12) (2005) 4203-4215.

51



Towards Optimal Data Acquisition in Diffuse Optical
Tomography: Analysis of Illumination Patterns

Marta M. Betcke and Simon R. Arridge
Department of Computer Science

University College London
WC1E 6BT London, UK

Email: m.betcke@ucl.ac.uk, s.arridge@cs.ucl.ac.uk

I. D IFFUSEOPTICAL TOMOGRAPHY

In diffuse optical tomography (DOT) [1], [2] the near infrared light
is used to probe the optical properties of the tissue such as absorption
and scattering. The value of those parameters can be relatedto
oxygenation levels of the tissue and hence provides a functional
imaging modality. Two main applications of DOT are neonatalbrain
imaging and breast imaging.

Transport of light through tissue is described by the Boltzmann
transport equation. In DOT, the scattering is assumed to be the
dominant process, and the so call diffusion approximation holds

−∇κ(r)∇φ(r, ω) + µa(r)φ(r, ω) +
iω

c
φ(r, ω) = 0, r ∈ Ω (1)

B
−φ(r, ω) = J−, r ∈ ∂Ω

B
+φ(r, ω) = J+, r ∈ ∂Ω,

whereκ and µa are the space dependent diffusion and absorption
coefficients, respectively,Ω is the considered domain andB± de-
note appropriate boundary conditions. We assume that the boundary
conditions specify a unique solution of (1).

The inward photon current,J+, travels through tissue undergoing
scattering and absorption according to optical parametersand gives
rise to the outgoing current,J− at the boundary∂Ω, defining a map
from the parameter spaceX to the space of measurable boundary
currentsZ, F : X → Z.

The change of the solutionφ of (1) at the boundaryΩ, due to the
change of optical parameters up to first order is the Fréchetderivative
of the forward mapF , r ∈ ∂Ω

∂F(r, ω)

∂µa(r′)
= −ψ(r, r′, ω)φ(r′, ω), r′ ∈ Ω

∂F(r, ω)

∂κ(r′)
= −∇ψ(r, r′, ω) · ∇φ(r′, ω), r′ ∈ Ω,

whereψ is the solution to the equation adjoint to (1).
The inverse problem in DOT is to recover the optical parametersµa

andκ from the boundary measurements, which amounts to inverting
the mapF . We note that since both the direct and adjoint fields
depend on the parameters to estimate,F is not linear. Hence it is
typically tackled with some type of Gauss Newton method, which
involves solution of a linearized problem at each iteration.

II. A NALYSIS OF ILLUMINATION PATTERNS

Linearizing the forward map, amounts to computing Fréchet
derivatives for different inward boundary currentsJ+ (illumination
patters), which each gives rise to an outward currentJ−. In praxis
only limited number of currentsJ+ can be applied and any only a
finite set of measurements can be taken to sampleJ−. In the modern
DOT systems, the measurements are usually taken by a camera with
a specified aperture providing highly resolved measurements of J−.

Fig. 1. Fréchet derivative (left) and its wavelet coefficients (right) for a
point source and point detector on the boundary of the circle. The wavelet
coefficients are plotted at the mesh nodes corresponding to the particular
wavelet.

The quality and speed limiting factor of the acquisition process is
application of the inward boundary currents. This leads to aproblem
of choice of an optimal set of illumination patterns i.e. theboundary
conditions for (1), to acquire the measurable information with the
least possible number of different inward boundary currents.

In this contributions we propose a method of analysis of the
linearized problem in dependence of the illumination patterns based
on a wavelet transform of Fréchet derivatives of the forward mapF .
Fréchet derivative for one source illumination pattern gives rise to
two rows (one for the real and one for the imaginary part) in the
system matrix of the linearized problem. Figure 1 shows an example
of Fréchet derivative (in factℜ(∂F/∂µa)) for circular domain inR2.
Due to smoothness the Fréchet derivatives are highly compressible in
wavelet basis, which hence provides an effective representation of the
information. As the diffusion equation (1) is usually solved with finite
elements, we apply wavelets constructed directly on the finite element
mesh [3]. The compressed form of the Fréchet derivatives isthen used
to infer the dependencies between different illumination patterns and
to arrive at an optimal set of illumination patterns. An optimal pattern
set should be able to sense all the measurable wavelet coefficients on
the domain but have the minimal redundancy between measurements.
An example of an optimality criteria is the condition numberof the
system matrix for a fixed number of applied illumination patterns.
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I. INTRODUCTION

Neural systems are continually confronted with a wealth of high-
dimensional data produced by their sensory environments. It is this
stream of apparently complex data that is used to understand and
navigate the world around us. While the sheer datarate of these
sensory signals may appear overwhelming at first glance, the statistics
of this data are highly structured and the actual information content is
much lower than the high ambient dimension of the raw data itself.
Indeed, as research has shown, models based on sparsity in some
basis can allow significant improvements in many applications.

There exists a long history of proposing sparsity models as a way
that neural systems could represent the low-dimensional structure in
sensory data. The results receiving the most attention in this area are
undoubtedly the work of Olshausen & Field [1]. In this pioneering
experiment, the authors showed that by assuming only a neural coding
model based on sparse approximation and applied to the statistics of
natural images, the optimal dictionary (i.e., overcomplete basis set)
is a set of localized, oriented, bandpass functions (similar to a Gabor
wavelet system). This has been of great interest to the computational
neuroscience community because the response properties of cells in
the primary visual cortex are often characterized with (qualitatively)
similar functions, lending credence to the hypothesis that the neural
system may be optimized to represent information in a sparse code.
In a fruitful demonstration of the power of interdisciplinary work, the
signal processing community has since made use of these ideas from
neuroscience (as well as adding their own significant advances), and
it is now routine to think of using unsupervised learning to determine
optimal dictionaries for representing new signal classes.

II. RECENT EVIDENCE

Unfortunately, the results from [1] represent only circumstantial
evidence for the sparse coding hypothesis in neuroscience. Despite
15 years passing since the publication of these results, we still lack
direct confirmation that sparse approximation is a significant coding
principle in neural systems (due at least in part to technological
barriers that are just being advanced by neurophysiologists). In the
interim, there has been a growing body of (also circumstantial) work
lending more evidence to support this hypothesis. Here we will survey
a collection of questions that have been asked and at least partially
answered in the neuroscience community about the validity of the
sparse coding hypothesis, with the aim of trying to induce more
interaction between research communities.

• Do the learned dictionaries quantitatively match the measured
response properties of cells in visual cortex? While the qualita-
tive match is undeniable, the results of Olshausen & Field (and
related results by Bell & Sejnowski using ICA [2]) actually fail
to match the measured response properties in some quantitative
ways. However, recent refinements of this model have shown
that the fits can be made much more quantitative through a

combination of increasing the overcompleteness of the dictio-
nary (biology is estimated to be 25-50 times overcomplete), and
using an inference scheme that induces more “hard sparseness”
(e.g., more coefficients that are exactly zero) [3]. This lends
an interesting aspect to the discussion about heuristic greedy
algorithms that achieve many zeros and convex relaxations that
may have difficulty driving coefficients to zero in practice.

• Do neural responses actually look sparse? Traditionally, many
neurophysiology experiments were performed with artificial
stimuli (e.g., sinusoidal gratings) where it would be difficult to
answer this question. In recent experiments using natural stimuli,
there is accumulating evidence of response patterns appearing
more sparse than predicted by classic models (e.g. [4]).

• Could neural systems solve the non-smooth optimizations we
use in sparse approximation? A plethora of algorithms for
`1 minimization have appeared in the literature recently, for
obvious reasons, all of them are designed to operate on a digital
computer with a centralized CPU. We have recently introduced a
dynamical system that provably solves these optimizations using
computational primitives appropriate for neural architectures [5].

• What about all the other nonlinear response properties I hear
about in neural systems? It is true that a broad variety of
nonlinear response properties reported by physiologist. For ex-
ample, in the visual cortex there have been many effects reported
in the literature known as non-classical receptive field effects
(nCRFs), where essentially the cell responds in a nonlinear
way to a modulatory stimulus that would not otherwise drive
the cell. These effects have all been modeled individually, or
described with a collection of ideas such as adaptive gain control
or predictive coding. We have recently performed a host of
simulated physiology experiments on a sparse coding model and
shown that nearly all of these nonlinear effects appear as simply
emergent effects from this single coding rule (both at the level
of individual cells and cell populations) [6].
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I. INTRODUCTION

This paper first investigates the choice of parameters of the chirplet
transform, leading to good detection properties. Then we propose a
cheap iterative detection algorithm with a single chirplet transform
computation, which avoids over-detection due to the redundancy of
the chirplet transform.

II. CHIRPLET TRANSFORM

The discrete chirplet transform [1] C[n, k, d] of a signal x[m] is
determined by

C[n, k, d] =

+MX
m=−M

x[n + m]φM [m]e−j2π 1
2

l
L

dmaxm2
e−j2πm k

K , (1)

with n, k are the time and frequency indices respectively, K the
number of frequencies. There are 2L+1 different chirprates, ranging
from −Ldmax to +Ldmax. The smoothing window φM [m] has
2M + 1 points, normalised such that its maximal value is 1. This
transform may be viewed as a collection of chirped Short Time
Fourier Transforms.

The stationary phase approximation [2] leads to an approximation
of the chirplet transform of a chirp of chirprate d0, centred on time
index n and frequency (k0 + d0n)K,

|C[n, k, d]| ≈ A

s
1

|d0 − d|φ|d0−d|MK [k − (k0 + d0n)K] (2)

However, when the chirp’s chirprate d0 is equal to the analysing
chirplet’s chirprate d, the chirplet transform is equivalent to a Fourier
transform: |C[n, k, d0]| ≈ A|ΦM [k − (k0 + d0n)K]| (3)

where ΦM [k] is the discrete Fourier transform of φM [m]. Note that
the maximum of ΦM [k] is ΦM [0] =

P
φM [m].

Figure 1 illustrates the validity of these approximations. The
blue and green curves are the values approximated by (3) and (2)
respectively, the red curve is the value of |C[0, 0, d]|.

The transition from approximation (2) to (3) corresponds to the
value of |d0 − d| = 1

ΦM [0]2
= ∆d0 such that these two approxima-

tions are equal.
The energy of the chirplet coefficient is maximal if |d0−d| < ∆d0.

Consequently, by choosing the parameters of the chirplet transform
such that the chirprate step is less than 2∆d0, we are assured to get
a good detection for any chirp.

III. MAXIMUM CHIRPLET TRANSFORM

To simplify the detection problem, we define the Maximum
Chirplet Transform (MCT) D[n, k] at a given time-frequency point
[n, k], containing all maxima of the square modulus of the chirplet
coefficients along the chirprates

D[n, k] = max
d
|C[n, k, d]|2. (4)
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Fig. 2. Illustration of a detection step.

We choose to use a detection based on a Neyman-Pearson approach,
which provides a detection threshold. However, this swrwxrion pro-
vides a high number of detection coefficients in the MCT due to the
redundancy of the chirplet transform.

Considering all possible spectral windows for any chirp, we can
define a upper-bound spectral window, such that for any analysed
chirp, the upper-bound spectral window normalised and centred on
the highest MCT value is greater or equal than all MCT spectrum
points.

We propose an iterative detection, using a single chirplet transform
computation: at each ietration, the upper-bound spectral window
centred on the point of highest magnitude is subtracted from the MCT
spectrum, and a new iteration is run over this new spectrum. The
iterations stop when all spectrum coefficients are below the detection
threshold t. Contrary to the Matching Pursuit approach, the spectrum
does not need to be re-computed at each iteration.

Figure 2 illustrates a first iteration of such a detection. In blue,
the MCT spectrum, in green the upper-bound window, and in red the
detection threshold t.

IV. CONCLUSION

The minimal chirprate step of the chirplet transform leading to
good detection properties have been investigated in this paper. A
detection method, based on iterative subtraction of the Maximum
Chirplet transform spectrum has been proposed, selecting only a
few chirplet coefficients in spite of the redundancy of the chirplet
transform.
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Abstract—We present an acceleration strategy based on smooth,
Riemannian optimization for rank minimization problems. By assuming
that the rank of the minimizer is known, the original rank minimization
can be formulated as a smooth optimization problem on the manifold
of fixed-rank matrices. We show that these low-dimensional problems
can be solved very efficiently. We apply our framework to large-scale
Lyapunov equations and low-rank matrix completion, and compare to
the state of the art.

I. INTRODUCTION

Let ε ≥ 0 be a tolerance and L : Rn×m → Rn×m a linear
operator. Then, given C ∈ Rn×m, the noisy version of the rank
minimization problem [1]

minimize rank(X)

subject to X ∈ Rn×m, ‖L(X)− C‖F < ε
(1)

can be turned into a smooth optimization problem,

minimize f(X) := ‖L(X)− C‖2F ,
subject to X ∈Mk := {X ∈ Rn×m : rank(X) = k},

(2)

provided that the rank k of the optimizer in (1) is known.
It is well known that the set Mk is a smooth submanifold

embedded in Rn×m. Since the objective function is smooth also,
problem (2) is a smooth Riemannian optimization problem, which
turns out to be significantly easier to solve than (1).

We present numerical algorithms to solve (2) based on the
framework of retraction-based optimization in [2]. The numerical
algorithms heavily exploit the smoothness of Mk and are gener-
alizations of classical optimization algorithms on Euclidean space,
like Newton’s method and non-linear CG.

We consider two different applications: large-scale Lyapunov ma-
trix equations for PDEs and low-rank matrix completion.

II. LYAPUNOV MATRIX EQUATION

Solving the Lyapunov equation coincides with solving (2) for

L : Rn×n → Rn×n, X 7→ AXMT +MXAT

where A � 0 and M � 0 are given p.s.d. matrices. In case of large-
scale applications [3], matrix A corresponds to a discretized PDE
and M is a mass matrix. For some important PDEs, the solution
X := L−1(C) admits a very good low-rank approximation.

By using f(X) = tr(AXAM) − tr(XC) as objective function,
it is shown in [4] that one actually minimizes the energy norm of
the error. Now, we can apply Riemannian optimization to obtain a
low-rank approximation to the solution of Lyapunov equation.

Since the discretized PDEs are very large and highly ill-
conditioned, the optimization algorithms need to be preconditioned.
By exploiting the low-rank structure of the tangent spaces and the
specific form of the L, it is possible to efficiently precondition the
Riemannian Hessian of f(X) by L, restricted to the tangent space
at X . In practice, this results in a mesh-independent convergence for
the truncated CG-Newton method.

In the table below, the results of a numerical experiment are
listed to solve large-scale Lyapunov equations for a relative residual
of 10−6. The matrix A corresponds to a discretized 2D Poisson
equation, and M = I . A trust-region version of Newton’s method
was preconditioned as explained above.

size n 5002 10002 15002

time (s.) 40 175 443
rank(X) 12 12 12

III. LOW-RANK MATRIX COMPLETION

In the context of low-rank matrix completion, the objective func-
tion in (2) becomes f(X) := ‖PΩ(X − A)‖2F where A is a given
(numerically) low-rank matrix only known on a subset Ω through

PΩ : Rn×m → Rn×m, Xij 7→

{
Xij , (i, j) ∈ Ω,

0 otherwise.

In case the exact recovery of (1) can be formulated in terms of the
restricted isometry property [1], the operator PΩ can be assumed to
well-conditioned onMk. In this case, preconditioning is unnecessary
for large-scale problems.

Below, the experimental results are shown for the completion of
an n× n random matrix (i.i.d. Gaussian) of rank 50 with |Ω| = m.
We compared our nonlinear CG and Newton methods with two well-
known implementations, SVT [5] and inexact ALM [6]. The relative
tolerance was 10−4. Clearly, exploiting the knowledge of the rank
of the minimizer by optimizing on a manifold can greatly reduce the
time needed to solve (2).

CG TR Newton SVT in. ALM
n m/n2 (seconds/nb. of iterations)

5000 0.10 40/18 99/27 930/107 320/45
10 000 0.05 106/20 251/30 2048/110 1230/70
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Abstract—In this paper, we investigate the degrees of freedom (df)
of penalized `1 minimization (also known as the Lasso) for an un-
derdetermined linear regression model. We show that under a suitable
condition on the design matrix, the number of nonzero coefficients of the
Lasso solution is an unbiased estimate for the degrees of freedom. An
effective estimator of the number of degrees of freedom may have several
applications including an objectively guided choice of the regularization
parameter in the Lasso through the SURE framework.

Index Terms—Lasso, degrees of freedom, SURE.

I. INTRODUCTION

Consider the following linear regression model

y = Ax0 + ε, (1)

where y ∈ Rn is the response vector, A = (a1, · · · , ap) ∈ Rn×p is
a deterministic design matrix with n < p, x0 ∈ Rp is the unknown
regression vector, and ε ∈ Rn is the noise vector whose entries are
i.i.d. N (0, σ2). The goal is to solve (1) when the solution is assumed
to be sparse. Towards this goal, a now popular estimator is the Lasso
[4]. The Lasso estimate amounts to solving the following convex
problem

min
x∈Rp

1

2
‖y −Ax‖22 + λ‖x‖1, (2)

where λ > 0 is the regularization or tuning parameter. In the last
years, there has been a huge amount of work where efforts have
focused on investigating the theoretical guarantees of the Lasso
as a sparse recovery procedure from noisy measurements in the
underdetermined case n < p.

Degrees of freedom df is a familiar phrase in statistics. In overde-
termined linear regression df is the number of estimated predictors.
Degrees of freedom is often used to quantify the model complexity
of a statistical modeling procedure (e.g. it corresponds to the penalty
term of model selection criteria such as AIC and BIC). However,
generally speaking, there is no exact correspondence between the
degrees of freedom df and the number of parameters in the model.
On the other hand, the degrees of freedom plays an important role
for an objective selection of the tuning parameter.

Let us denote by x̂ any estimator of x0 which depends on y and
let ŷ = Ax̂. Since y ∼ N (Ax0, σ2 I), according to [2], the degrees
of freedom of ŷ is

df(ŷ) =

n∑
i=1

cov(ŷi, yi)

σ2
. (3)

If ŷ is almost differentiable, Stein’s lemma [3] yields the following
unbiased estimator of df

d̂f(ŷ) = div ŷ =

n∑
i=1

∂ŷi
∂yi

. (4)

Contributions Let µ̂λ = µ̂λ(y) = Ax̂λ(y) be the Lasso response
vector, where x̂λ(y) is a solution of the Lasso problem (2). In the
overdetermined case, i.e. n > p, x̂λ(y) is unique, and the authors in

[5] showed that for any given λ the number of non-zero coefficients
of x̂λ is an unbiased estimator of the degrees of the freedom of the
Lasso. Though their proof contains a gap. The contribution of this
paper is to extend their result to the underdetermined case where
the Lasso solution is not unique. To ensure the uniqueness of the
solution, we introduce the condition (UC) on the design matrix.

II. MAIN RESULTS

Let z ∈ Rp, S ⊆ {1, 2, · · · , p} and |S| its cardinality. We denote
by AS the submatrix AS = [· · · , aj , · · · ]j∈S , where aj is the jth
column of A and the pseudo-inverse (AtSAS)−1AtS of AS is denoted
A+
S . Let zj be the jth component of z. Similarly, we define zS =

(· · · , zj , · · · )j∈S for z. Let supp(z) = {j : zj 6= 0} be the support
or the active set of z.

Definition 1 (Condition (UC) [1]): A matrix A satisfies condition
(UC) if, for all subsets I ⊂ {1, · · · , p} with |I| ≤ n, such that
(ai)i∈I are linearly independent, for all indices j 6∈ I and all vectors
V ∈ {−1, 1}|I|,

|〈aj , (A+
I )tV 〉| 6= 1. (5)

Theorem 1: Suppose that A satisfies condition (UC). For any y ∈
Rn, there exists a finite set of values λ, denoted by {λm}, for which
we have

max
j 6∈I
|〈aj , y −Ax̂λ(y)〉| = λ, (6)

where I = supp(x̂(λ)) and x̂λ(y) is the solution of the Lasso.
Furthermore, if λ ∈

]
0, ‖Aty‖∞

[
\ {λm}, then

max
j 6∈I
|〈aj , y −Ax̂λ(y)〉| < λ. (7)

Theorem 2: Suppose that A satisfies condition (UC). For any y ∈
Rn, and all values of λ for which (7) is satisfied, we have
• The Lasso response µ̂λ(y) = Ax̂λ(y) is a uniformly Lipschitz

function of y;
• The support and vector sign of the Lasso solution are locally

constant with respect to y, and consequently

div µ̂λ(y) = | supp(x̂λ(y))|. (8)

That is, using Stein’s lemma [3] and the divergence formula (8), the
number of non-zero coefficients of x̂λ is an unbiased estimator of
the degrees of the freedom of the Lasso.
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I. PROBLEM STATEMENT

Suppose you are given a matrix X ∈ Rn1×n2 with rank
r � min(n1, n2). Moreover, assume this matrix has sparse nonzero
elements so that, due to the column-wise dependencies, they are all
supported on k � n1 number of rows (it can also be column-wise
supported). This matrix wont have many degrees of freedom; If one
knows the position of those k nonzero rows, the corresponding sub-
matrix contains only (k + n2 − r)r degrees of freedom.

Provided by the enormous developments in areas of compressed
sensing and low rank-matrix recovery [1][2][3][4], one may wonder if
it is possible to acquire the whole matrix elements from a very few
number of non-adaptive linear measurements. In this regard, three
questions immediately follow; what should be those measurements?
How to design a computationally tractable algorithm to recover this
matrix from those possibly noisy measurements? And finally, how to
evaluate the performance i.e., how many measurements do we need
to recover exact low-rank and sparse matrix, and does the algorithm
performs stable with respect to matrices that are approximately low-
rank or not exactly joint-sparse but compressible? This paper attempts
to answer the questions above.

II. PRIOR ARTS

Recently a few papers consider rank awareness in data joint-
recovery from multiple measurement vectors (MMV) [5] [6]. More
precisely, sparse MMV inverse problem (also known as simultaneous
sparse approximation), focuses on recovering a joint-spase matrix X
from a set of measurements Y ∈ Rm×n2 acquired as Y = AX .
There, A ∈ Rm×n2 is the measurement matrix that is unique for
compressive sampling signals of all the n2 channels (columns of
X). Davis et al. [5] proposed a specific rank-aware greedy algorithm,
that in case of using a random i.i.d. Gaussian A, is able to recover
(with high probability) an exact k-joint-sparse and rank-r X from its
noiseless MMV, if the total number of measurements scales as,

m = n2m & O
`
n2k(logn1/r + 1)

´
. (1)

III. ORIGINALITY OF OUR WORK

Our work contrasts with prior arts in three main aspects:
1- Let us define the linear map A : Rn1×n2 → Rm and model our

sampling mechanism by y = A(X) + z, for a noise vector z ∈ Rm.
As we can see, this measurement scheme is able to model more
general cases than a uniform sampling matrix for all the channels
e.g., in distributed compressed sensing scenarios, each channel can
be sampled by an independent measurement matrix (rather than a
unique one), or even in non-distributed cases where the sampling
matrix is designed so that each measurement reflects a global average
behavior of the whole matrix rather than a local specific channel.

2- Our recovery algorithm is different and is based on the following
convex minimization,

arg min
X

‖X‖2,1 + λ‖X‖∗ (2)

subject to ‖y −A(X)‖2 ≤ ε.

The l2,1 mixed-norm is defined as ‖X‖2,1 :=
P

i(
P

j X
2
i,j)

1/2

and the nuclear norm ‖X‖∗ is the sum of the singular values of X .
3- Our performance analysis, guarantees stability of our recovery

approach against noisy measurements, non-exact sparse and approx-
imately low-rank data matrices. We prove that, if our measurement
system satisfies a specific restricted isometry property (RIP), the
solution of (2), stably recovers all joint-sparse and low-rank matrices.
In particular, we show that, for certain random measurement schemes,
the number of measurements m sufficient for stable recovery scales
as,

m ≥ O
“
k
`
r + log(n1/k)

´
+ n2r

”
. (3)

Regarding rank of the data matrix, our bound is of a different nature
than (1) i.e., the lower the rank, less measurements are required.
Indeed, in many multichannel signal applications, where (due to the
structure behind) a huge data matrix turns out to have a low-rank
(r � k � n2), our approach outperforms those in the state-of-the-
art, reflecting the importance of a good design for the measurements
A together with the recovery approach benefiting those structures
(i.e., joint-sparse and low-rank).

In the rest of this paper, we develop an algorithm to solve (2)
using proximal splitting methods [7]. A number of simulations on
synthetic data as well as an interesting important application in
Hyperspectral imaging, demonstrate a massive saving of the number
of measurements required to recover data, compared to the existing
methods.
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Abstract—Recently, relaxed belief propagation and approximate mes-
sage passing have been extended to apply to problems with general
separable output channels rather than only to problems withadditive
Gaussian noise. We apply these to estimation of signals fromquantized
samples with minimum mean-squared error. This provides a remarkably
effective estimation technique in three settings: an oversampled dense
signal; an undersampled sparse signal; and any signal when the quantizer
is not regular. The error performance can be accurately predicted and
tracked through the state evolution formalism. We use stateevolution
to optimize quantizers and discuss several empirical properties of the
optimal quantizers.

I. OVERVIEW

Estimation of a signal from quantized samples arises both from
the discretization in digital acquisition devices and the quantization
performed for compression. An example in which treating quanti-
zation with care is warranted is analog-to-digital conversion, where
the advantage from oversampling is increased by replacing conven-
tional linear estimation with nonlinear estimation procedures [1]–
[3]. Sophisticated approaches are also helpful when using sparsity
or compressibility to reconstruct an undersampled signal [4]–[6].

A rather general abstraction is to considery = Q(Ax), where
x ∈ R

n is a signal of interest,A ∈ R
m×n is a linear mixing

matrix, andQ : Rm → R
m is a quantizer. We will limit our attention

here to scalar quantizers, meaning thatQ is separable intom scalar
quantizersqi : R→ Y ⊂ R with Y countable.

Implementation of belief propagation (BP) for estimation of a
continuous-valued quantity requires discretization of densities; this
is inexact and leads to high computational complexity. To handle
quantization without any heuristic additive noise model and with low
complexity, we use a recently-developed Gaussian-approximated BP
algorithm, calledrelaxed belief propagation [7], [8], which extends
earlier methods [9], [10] to nonlinear output channels.

Our first main contribution is to demonstrate that relaxed BP
provides significantly-improved performance over traditional methods
for estimating from quantized samples. Gaussian approximations
of BP have previously been shown to be effective in a range of
applications; the extension to general output channels [7], [8] is
essential to our application.

Our second main contribution concerns the quantizer design. When
quantizer outputs are used as an input to a nonlinear estimation algo-
rithm, minimizing the mean-squared error (MSE) between quantizer
input and output is not necessarily equivalent to minimizing the MSE
of the final reconstruction. We use the fact that the MSE underlarge
random mixing matricesA can be predicted accurately from a set of
simple state evolution (SE) equations [8], [11]. Then, by modeling
the quantizer as a part of the measurement channel, we use the
SE formalism to optimize the quantizer to asymptotically minimize
distortions after the reconstruction by relaxed BP.

II. SIMULATION EXAMPLE

Form A from i.i.d. Gaussian random variables, i.e.,Aai ∼

N (0, 1/m); and assume i.i.d. Gaussian noise with varianceσ2 =

1 1.2 1.4 1.6 1.8 2
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Rate (bits / component)

M
S

E
 (

d
B

)

 

 

Linear

LASSO

Uniform RBP

Optimal RBP

Fig. 1: Performance comparison.

10−5 perturbs measurements before quantization. The signalx is
generated with i.i.d. elements from the Gauss-Bernoulli distribution

xi ∼

{

N (0, 10) , with probability 0.1;
0, with probability 0.9.

Figure 1 presents a comparison of reconstruction distortions and
confirms (a) the advantage of relaxed BP estimation; and (b) the
advantage of optimizing quantizers using the SE equations.The
quantization rate is varied from1 to 2 bits per component ofx,
and for each quantization rate, we optimize quantizers for the MSE
of the measurements (labeled “Uniform RBP”) and for MSE of the
reconstruction via relaxed BP (labeled “Optimal RBP”). The figure
also plots the MSE for linear MMSE estimation and lasso, both
assuming the uniform quantizer that minimizes MSE of the measure-
ments. Lasso performance was predicted by state evolution equations
in [8], with the regularization parameter optimized. Relaxed BP offers
dramatically better performance—more than 10 dB improvement at
low rates. At higher rates, relaxed BP performance saturates due to
the Gaussian noise at the quantizer input. Furthermore, optimizing the
quantizer for the relaxed BP reconstruction improves performance by
more than 4 dB for many rates. See also [12].
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Abstract—A class of nonstationary time series is proposed of series that
exhibit sparsity. The class is specified in the ambiguity domain, and is
defined for the sampling of the observed data. Unlike traditional classes
of nonstationary processes there is no implicit definition of local stability
uniformly across the frequencies of the signal, and no tacit reference
to a given representation, such as a class of wavelets or a given short-
time Fourier transform. The properties of the class are derived and
an Empirical Bayes method of estimation is introduced that is able to
estimate the covariance of aggregations of inhomogeneous signals.

I. I NTRODUCTION

A traditional assumption necessary for much of time series method-
ology to work is that of stationarity. Unfortunately many signals
observed in real applications do not satisfy this constraint, and so
since the 1940s theory and methods for nonstationary processes have
been developed, see the discussions in [1].

In statistics there has been a focus on methods using the short-
time Fourier transform [2], [3], or the wavelet transform [4]. A
problem with such methods is that the analysis becomes strongly
representation dependent. We think that it is natural to define a
nonstationary process in terms of the given sampling, and to use
the full observed bandwidth of the observations, arguing that the
Ambiguity Function (AF) [5] of the process should be sparse. This is
in contrast with both local Fourier methods and underspread processes
[6], which automatically smooth out most of the ambiguity function.

Given the statistical properties of an ambiguity sparse process, an
Empirical Bayes estimation procedure is suitable for the estimation
of its second order structure, and this can be represented using any
chosen (bilinear) time-frequency representation.

II. A N AMBIGUITY SPARSEPROCESS

Assume that{Xn} is a zero-mean harmonizable process sampled
at tn = nΔt, with sampling periodΔt, where a sample sizeN is
collected and let{Zn} be the analytic signal constructed from{Xn}.
Assume thatMτ (tn) = E (ZnZ∗n−τ ), is the auto-covariance of the
analytic signal and define the ambiguity function to be

Aτ (ν) = Δt
∞∑

n=−∞

Mτ (tn) e
−2iπνtn . (1)

An important characteristic of the ambiguity function is its support
in the (τ, ν) plane as this characterises the process under analysis.

Definition 1: Ambiguity Sparse Process
A second order real-valued time series{Xn = X(nΔt)} is denoted
Ambiguity Sparseat samplingN,Δt if its AF can be represented for
K ∈ N in the formAτ (ν) =

∑K
k=1A

(k)
τ (ν),

A(k)τ (ν) =
B(k)(ν, τ/N)

[

Δt2
(
ν − ν(k)0

)2
+
(
τ − τ (k)0

)2
/N2

]δ(k) , (2)

with B(k)(ν, u) a smooth function near(ν(k)0 , τ
(k)
0 ), taking a non-

zero value at this point, with3
4
> δ(k) > 1

4
.

III. I NFERENCE

With the model of Eqn. (2), the sample ambiguity function is
concentrated near the points{(ν(k)0 , τ

(k)
0 )}, as would be expected,

and is small in magnitude away from these points. To avoid excessive
smoothing, an Empirical Bayes method [7] is used to shrink the
observed ambiguity function and determine the estimated ambiguity
function. This can then be transformed back into a representation
of the autocovariance sequence of the process, that corresponds
to a variable bandwidth smoothing of the sample autocovariance
sequence, see also [8]. The estimated autocovariance sequence can
be corrected into a valid covariance matrix, and any chosen bilinear
representation [9] that is suitable to represent the process can be
calculated. The performance of the method depends on the degree
of sparsity of the ambiguity function and can be interpreted as a
composite likelihood method.

IV. D ISCUSSION

Time-frequency representations of nonstationary time series is a
very well researched area. Because of the variety of nonstationary
signals many different forms of representation of the covariance have
been proposed, and it is possible to find classes of signals [1] so that
any given representation is unsuitable. For this reason the basic object
to estimate is the autocovariance of the analytic signal of the process,
and then various representations can be formed that illustrate different
characteristics of the process. It is important to avoid placing uniform
smoothness assumptions on the evolution of the autocovariance
sequence, especially in exploratory data analysis. We complement the
interesting work in [10], as our methods are applicable to a large class
of harmonizable processes that do not necessarily have sparse Wigner
distributions. In our work the estimation of the second order structure
is separated from its representation, and automatically adapted to
the variable smoothness of the signal. This means that uniform and
heavy-handed smoothing can be avoided, and the full bandwidth of
the signal understood.
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Abstract—The detection of random signals with unknown distribu-
tions and occurrences in additive and independent standard Gaussian
noise can be performed on the basis of a weak probabilistic definition of
sparseness. A sparseness-based estimator of the noise standard deviation
can be derived from this definition. It outperforms standard robust
estimators, for large signal probabilities of occurrence. The sparseness
model and its theoretical applications are also commented in connection
with statistical properties of wavelet transforms of wide-sense stationary
random processes. Links between sparseness and the problem of testing
the norm of a random signal are presented and discussed as well.

I. THE PROBLEM

We address the fundamental statistical signal processing prob-

lem of detecting some signal or signal coefficient with unknown

probability distribution in additive standard Gaussian noise with

possibly unknown standard deviation. The decision is performed

from either the noisy observations or the coefficients observed in a

transform domain where the signal is assumed to obey a sparse-

ness model discussed below. We address the very general case

of a random signal with unknown distribution for the following

reasons. First, the deterministic assumption on the signal is an

oversimplification with regard to physics and the random model

should generally be prefered. Second, in applications based on

passive sensors (Electronic Support Measure, spectrum sensing,

among others), so little may be known about the signal or

most of its describing parameters [1] that the signal probability

distribution can be partially or definitely unknown.

II. SPARSENESS-BASED DETECTION AND ESTIMATION

The non-parametric tests established in [2] guarantee an error

probability upper bound for the detection of those signals whose

probability of presence does not exceed p∗
≤ 1/2 and whose norm

is above (a-s) some positive lower bound. Such constraints on the

signal probability of occurrence and norm specify a sparseness

model for random signals. This model actually bounds our lack of

prior knowledge. It is said to be weak because it involves the case

of probabilities of presence possibly equal to one half. In contrast,

standard sparsity models derived from [3] are stronger since they

correspond to p∗
≪ 1/2. The sparseness model deriving from

[2] applies to non-parametric estimation by wavelet shrinkage,

whereas standard sparsity models concern deterministic signals

even for detection problems [4].

The tests of [2] require prior knowledge of the noise standard

deviation. Sparseness is then instrumental to design a new esti-

mator of the noise standard deviation when signals have unknown

distributions and probabilities of presence in noise [5]. This

sparseness-based estimator outperforms standard robust ones,

when p∗ is large and even equal to 1/2. Indeed, robust estimators

may fail in estimating the noise standard deviation in presence of

too many signals acting as outliers among the noise data, whereas

our model covers such situations.

The results summarized above not only comply with the sparse

nature of wavelet transforms for signal representations but also

with statistical properties of wavelet packets. Specifically, co-

efficients returned by wavelet packet transforms of wide-sense

stationary random processes tend to be Gaussian uncorrelated

when the resolution level and the order of the decomposition

filters are both large enough [6].

A perspective of the results summarized above is then the design

of unsupervised algorithms capable of detecting, estimating and

acquiring statistical knowledge about random signals that obey

our sparseness model and whose distributions and occurrences

are initially unknown.

III. SIGNAL NORM TESTING (SNT) AND SPARSENESS

Signal norm testing (SNT) is the problem of deciding whether

a random signal norm exceeds some specified value or not,

when the signal has unknown probability distribution in additive

and independent standard Gaussian noise [7]. The crux in the

aproach is the invariance of the noise probability distribution. An

optimality criterion, based on this invariance only, is introduced

to design SNT tests. Sparse SNT (SSNT) will then be proposed.

In particular, SSNT of a random signal whose norm has bimodal

and/or heavy-tailed distribution is akin to the sparseness-based

detection problem of [2]. Some applications of SSNT to signal

and image processing will also be provided.
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Abstract—There remains a significant gap between the discrete, finite-
dimensional compressive sensing (CS) framework and the problem of
acquiring a continuous-time signal. In this talk, we will discuss how
sparse representations for multiband signals can be incorporated into the
CS framework through the use of Discrete Prolate Spheroidal Sequences
(DPSS’s). DPSS’s form a highly efficient basis for sampled bandlimited
functions; by modulating and merging DPSS bases, one obtains a sparse
representation for sampled multiband signals. We will discuss the use
of DPSS bases for both signal recovery and the cancellation of strong
narrowband interferers from compressive samples.

EXTENDED ABSTRACT

In many respects, the core theory of compressive sensing (CS) is
now well-settled. Given a suitable number of compressive measure-
ments y = Φx of a finite-dimensional vector x, one can recover x
exactly if x can be expressed in some dictionary Ψ as x = Ψα where
α is exactly sparse. If α is not exactly sparse, then one can recover
an approximation to x, and there exist provably efficient and robust
algorithms for performing this recovery.

However, although one of the primary motivations for CS is to
simplify the way that high-bandwidth signals are sampled, there
remains a significant gap between the discrete, finite CS framework
and the problem of acquiring a continuous-time signal. Previous work
has attempted to bridge this gap by employing two very different
strategies. First, in [11] the authors operate directly within the
CS framework by employing the simple (but somewhat unrealistic)
assumption that the analog signal being sampled is comprised of a
sparse linear combination of pure tones with frequencies restricted a
harmonic grid. The advantage of this assumption is that it ensures a
finite-dimensional sparse representation for x if one chooses Ψ to be
the DFT basis. Alternatively, other authors have considered a more
realistic signal model—the class of multiband signals built from sums
of narrowband, bandpass signals—but have performed their analysis
largely outside of the standard CS framework [4, 8].

In this talk, we will discuss how sparse representations for
multiband signals can be incorporated directly into the CS frame-
work through the use of Discrete Prolate Spheroidal Sequences
(DPSS’s) [10]. First introduced by Slepian in 1978, the DPSS’s can
be viewed (and derived) as the discrete-time, finite-length sequences
whose Discrete-Time Fourier Transform (DTFT) is most concentrated
within a given bandwidth. Most significantly, one can show that for
a given sequence of length N and bandlimit W ∈ (0, 1

2
), the first

≈ 2NW DPSS functions form a basis that will capture virtually
all of the energy in any length-N sample vector arising from the
uniform sampling of a bandlimited analog signal. We will expand
upon this fact in our talk and explain how, by modulating DPSS’s
from the baseband to a carrier frequency fc, one obtains a basis
for sample vectors arising from the uniform sampling of bandpass
analog signals. Merging collections of modulated DPSS’s, one then
obtains bases for sample vectors arising from the uniform sampling
of multiband analog signals.

We will discuss the role that such DPSS bases can have in CS. One
natural application is in the recovery of windows of multiband signals
from the sort of compressive measurements that arise in nonuniform
sampling [1] or random demodulation [7] CS architectures. The DPSS
bases enjoy a tremendous advantage over the DFT for this purpose;
while the DFT representation for a multiband signal is not sparse (it
is not even compressible!), the DPSS representation for a multiband
signal is almost perfectly sparse and indeed reflects the fundamental
information level. We will discuss ongoing work in developing DPSS-
based recovery algorithms for CS. Our work on this front differs
from [5, 6, 9] in that we consider discrete-time vectors that arise from
sampling analog signals with arbitrary multiband spectra.

A second application of the DPSS bases in compressive signal
processing involves the cancellation of strong narrowband interferers
from a set of compressive samples. Building on the work in [2,
3], we will explain how such interferers can easily be cancelled by
orthogonalizing a measurement vector against the DPSS subspace,
and we will demonstrate that various signal inference problems can
be solved with a high degree of accuracy after the cancellation of an
interferer many times stronger than the signal itself.
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Abstract—The theory of Finite Rate of Innovation (FRI) broadened the
traditional sampling paradigm to certain classes of parametric signals. In
this paper we review the ideal FRI sampling scheme and some techniques
to combat noise. We then present alternative and more effective denoising
methods for the case of exponential reproducing kernels.

I. INTRODUCTION

In [1] and [2] it was shown how certain classes of non-bandlimited
signals can be sampled and perfectly reconstructed. These signals
can be completely characterised by their rate of innovation. In
the presence of noise, the ideal approaches become unstable and
alternative methods are required [3]. This paper focuses on the
optimal use of exponential reproducing kernels introduced in [2] for
the noisy scenario.

II. SAMPLING SIGNALS WITH FRI

Consider a stream of K Diracs at locations tk, with amplitudes
ak and of duration τ seconds. If we sample the signal with an
exponential reproducing kernel ϕ

�
� t
T

�
we obtain the measurements

yn �
〈
xptq, ϕ

�
t
T
� n

�〉
, for n � 0, 1, . . . , N � 1. Here N is the

number of samples and we use a sampling period T � τ
N

.
An exponential reproducing kernel is any function ϕptq that satis-

fies
°
nPZ cm,0e

αmpn�tqϕpt� nq � 1 with αm P C for appropriate
coefficients cm,n � cm,0e

αmn. Equivalently we can write

cm,0

» 8

�8

e�αmtϕptqdt � 1. (1)

Furthermore, any composite function of the form ϕptq � γptq 

β~αP

ptq, where β~αP
ptq is an E-Spline [4], is able to reproduce the

set eαmt, m � 0, 1, . . . , P .
Reconstructing the input is a two step process [2]. First, the

samples yn are linearly combined to get the new measurements
sm �

°N�1
n�0 cm,nyn. These are equivalent to a power series

involving the locations tk and amplitudes ak for αm � α0 �mλ.
Second, the unknown parameters can be retrieved using the classical
Prony’s method. The key ingredient is the annihilating filter, for which
the following holds [3]:

Sh � 0 (2)

i.e. the Toeplitz matrix S is rank deficient. Note that we require
P ¥ 2K � 1.

III. WORKING IN THE PRESENCE OF NOISE

When the sampling process is not ideal we obtain a corrupted
version of the measurements ŷn � yn�εn. The Toeplitz matrix of (2)
then becomes Ŝ � S�B and is no longer rank deficient. When the
noise term B is additive white Gaussian (AWGN) it is reasonable
to look for a solution that minimises }Ŝh}2 s.t. }h} � 1 [3]. This
is a classical total-least-square (TLS) problem that can be solved
using singular value decomposition (SVD). The solution is further
improved by denoising Ŝ using, for instance, Cadzow algorithm.

Jose Antonio Urigüen is sponsored by the non-profit organisation “Fun-
dación Caja Madrid” — Pier Luigi Dragotti is in part supported by a Global
Research Award from the Royal Academy of Engineering.

Modified TLS and E-Splines

For exponential reproducing kernels B is due to coloured noise.
In order for SVD to provide a reliable separation of the signal and
noise subspaces it becomes necessary to “pre-whiten” the noise. If we
know the covariance matrix of the noise R up to a constant factor λ,
we can factor it: R � λB�B � QTQ and recover the appropriate
subspaces by considering the SVD of Ŝ1 � ŜQ�1.

It is also possible to control the term B by designing an appropriate
sampling kernel. Consider the matrix C of size pP � 1q � N with
coefficients cm,n at locations pm,nq. If we want the noise to be white
we need the matrix C to have orthonormal rows. This is achieved
by making them orthogonal with αm � jωm � j 2πm

N
and then

orthonormal by setting |cm,0| � 1, which is achieved using (1):

|ϕ̂pωmq| � |γ̂pωmqβ̂~αP
pωmq| � 1, (3)

where ϕ̂p�q is the Fourier transform of ϕptq. Among the kernels satis-
fying (3), we are interested in the one with the shortest support. This
kernel can be formed as a linear combination of various derivatives of
the original E-Spline. It is a variation of the maximal-order minimal-
support kernels of [5] and is still able to reproduce exponentials.
Now, solving the problem in the Fourier domain we only need to
determine a polynomial that interpolates (ωm, |β̂~αP

pωmq|
�1q.

IV. SIMULATION RESULTS

Fig. 1 shows the modified E-Spline kernels (‘ME’) have the best
performance, which improves with increasing order P . The modified
Cadzow algorithm (‘MC’) marginally beats the original (‘C’).
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Figure 1. Retrieval of K � 2 Diracs in the presence of noise. We use τ � 1
seconds, N � 31 samples and average over 1000 realisations.
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Abstract—We will discuss a generalization of the Shannon Sampling
Theorem that allows for reconstruction of signals in arbitrary bases in
a completely stable way. When extra information is available, such as
sparsity or compressibility of the signal in a particular bases, one may
reduce the number of samples dramatically. This is done via Compressed
Sensing techniques, however, the usual finite-dimensional framework is
not sufficient. To overcome this obstacle I’ll introduce the concept of
Infinite-Dimensional Compressed Sensing.

I. THE SHANNON SAMPLING THEOREM

The well known Shannon Sampling Theorem states that if

f = Fg, g ∈ L2(R),

(note that F is the Fourier Transform) and supp(g) ⊂ [−T, T ] for
some T > 0, then both f and g can be reconstructed from point
samples of f . In particular, if ε ≤ 1

2T
(the Nyquist rate) then

f(t) =

∞X
k=−∞

f(kε)sinc

„
t+ kε

ε

«
, L2 and unif. conv., (1)

g = ε

∞X
k=−∞

f(kε)e2πiεk·, L2 convergence. (2)

In practice, one cannot process nor acquire the infinite amount of
information {f(kε)}k∈Z that is needed to fully reconstruct f and
g and thus one must resort to forming, for some N ∈ N, the
approximations

fN =

NX
k=−N

f(kε)sinc

„
t+ kε

ε

«
, gN = ε

NX
k=−N

f(kε)e2πiεk·.

The question on how well these functions approximate f and
g is related to the speed of convergence of the series in (1)
and (2). Which again is related to how suitable the functions
{sinc ((·+ kε)/(ε))}k∈Z and {e2πiεk·}k∈Z are in series expansions
of f and g. In particular, there may be L2 functions {ϕk}k∈N and
coefficients {βk}k∈N such that the series

f =
X
k∈N

βkFϕk, g =
X
k∈N

βkϕk

converge faster than the series in (1). There are therefore two
important questions to ask:
(i) Can one obtain the coefficients {βk}k∈N (or at least approx-

imations to them) in a stable manner, based on the same
sampling information {f(kε)}k∈N, and will this yield better
approximations to f and g?

(ii) Can one subsample from {f(εk)}k∈N (e.g. not sampling at the
Nyquist rate) and still get recovery of {βk}k∈N and hence f and
g?

The final answer to the first question YES! and can be summarized
in the following generalization of the Shannon Sampling Theorem
below.

The answer to the second question is also YES! (given some extra
requirements on the signals f and g). This is done via the concept
of Infinite-Dimensional Compressed Sensing.

Theorem I.1. Let F denote the Fourier transform on L2(Rd).
Suppose that {ϕj}j∈N is an orthonormal set in L2(Rd) such that
there exists a T > 0 with supp(ϕj) ⊂ [−T, T ]d for all j ∈ N. For
ε > 0, let ρ : N→ (εZ)d be a bijection. Define the infinite matrix

U =

0BBB@
u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .

...
...

...
. . .

1CCCA , uij = (Fϕj)(ρ(i)). (3)

Then, for ε ≤ 1
2T

, we have that εd/2U is an isometry. Also, set

f = Fg, g =

∞X
j=1

βjϕj ∈ L2(RN ),

and let (for l ∈ N )Pl denote the projection onto span{e1, . . . , el}.
Then, for every K ∈ N there is an n ∈ N such that, for all N ≥ n,
the solution to

A

0BBBBBB@
β̃1

β̃2

β̃3

...
β̃K

1CCCCCCA = PKU
∗PN

0BBB@
f(ρ(1))
f(ρ(2))
f(ρ(3))

...

1CCCA , A = PKU
∗PNUPK |PK l

2(N),

(4)
is unique. If

g̃K,N =

KX
j=1

β̃jϕj , f̃K,N =

KX
j=1

β̃jFϕj ,

then

‖g − g̃K,N‖L2(Rd) ≤ (1 +CK,N )‖P⊥Kβ‖l2(N), β = {β1, β2, . . .},

‖f − f̃K,N‖L∞(Rd) ≤ (2T )d/2(1 + CK,N )‖P⊥Kβ‖l2(N),

where, for fixed K, the constant CK,N → 0 as N →∞.

The results can be found in [1], [2], [3], and the ideas stem from
[4].
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Abstract—The l1-regularized least-squares problem have received

broad attention the last couple of years. This have resulted in numerous
approaches for supplying reliable solvers which combines both well

known methods and recently developed techniques for efficient com-

putations. We define a class of algorithms which is not as restrictive

as classic black-box algorithms and hence includes most of the recently
proposed methods. We show that it is not possible to obtain a worst-case

convergence rate better than O
(

1

k2

)

for 2k ≤ s ≤ n, where k is the

iteration counter, s is the size of the support, and n is the dimension.

I. INTRODUCTION

In this extended abstract we will show a lower bound on the

convergence for a certain class of algorithms applied to the well

studied ℓ1-regularized least-squares, ℓ1− ℓ2-problem or basis pursuit

denoising/LASSO in Lagrange form. We will take an approach

inspired by [1], see also [2], but we will not necessarily restrict us to

the standard black-box assumption. Instead we provide a similar rule

which however defines a broad class of algorithms including many

popular algorithms.

Consider the well known convex problem of the form

minimize f(x) = 1
2
xT Qx− cT x + γ‖x‖1 (1)

for x, c ∈ Rn, and Q ∈ Rn×n. Let g(x) = 1
2
xT Qx−cT x. Note that

1
2
‖Ax−b‖22 = 1

2
xT AT Ax−bT Ax+bTb, such that for minimization

over x we have Q = AT A and c = AT b.

A. A Class of Algorithms M

LetM be a class of iterative algorithms with mf ∈M and denote

the support as supp(x) = { i | xi 6= 0 }. The function mf generate

iterates x(k) according to

x
(k) = mf

(

x
(k−1);∇g(x(k−1))

)

, k = 1, · · · (2)

with

supp
(

x
(k)

)

∈ supp
(

x
(k−1)

)

⋃

supp
(

∇g(x(k−1))
)

(3)

Note that the function mf is allowed to make other operations than

that governed by x(k−1) and ∇g(x(k−1)) based on its knowledge of

the function f , i.e.., the iterative method may not satisfy the standard

black-box assumption [2], [1], but may use a black-box assumption

on g, see [3].

B. Results

By inspection it can shown that a wide range of algorithms belongs

to M, such as GPSR [4], IST [5], [6], FISTA [7], [3] FPC [8]

and FPC-AS [9], parallel ℓ1-regularized least-squares [10], homotopy

methods [11] and l1 ls [12] if k is the accumulated iteration counter

for the preconditioned conjugate gradient method.

By construction a specific function with closed form solution, we

provide the following theorem.

Theorem 1.1: For any k, 1 ≤ k = 1
2
|S|, |S| ≤ n and S =

supp (x⋆), there exist a function f(x) = 1
2
xT Qx − cT x + γ‖x‖1,

Q � 0, x ∈ Rn such that for any mf ∈ M with x(0) = 0,

f(x(k))− f
⋆ ≥

1

6

‖x(0) − x⋆‖22
(k + 1)2

. (4)

Note that sometimes x(0) = AT b = c is used, which is the same

as x(1) if x(0) = 0. That is, using x(0) = AT b compared to x(0) = 0
only corresponds to a shift of one iteration.

II. DISCUSSIONS

We note that we do not assume Q � µ, and this result does

therefore not conflict with the linear rate of convergence provided

in [8]. The theorem show that it is not possible to provide algorithms

with better worst-case complexity than O
(

1
k2

)

without making

further assumptions on the problem and/or algorithm. The result

provided is then constructive in the sense that it renders functions and

algorithm to avoid, visible to the algorithm designer. It is necessary

to steer clear of these functions and/or algorithms if the designer is

to provide algorithms with better worst-case iteration complexity.
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We consider a standard Compressed Sensing model in
which we seek to recover ak-sparse signalx ∈ IRN from
n linear measurementsb = Ax, where k ≤ n ≤ N .
Since the introduction of CS in 2004, many algorithms
have been developed to solve this problem. Because of
the paradoxical nature of CS – exact reconstruction from
undersampled measurements – it is crucial for the acceptance
of an algorithm that rigorous worst-case analysis verifies
the degree of undersampling the algorithm permits. This
aim can be accomplished by means of the phase transition
framework in which we let(k, n, N)→∞, while preserving
the proportionsδ = n/N andρ = k/n [1].

We provide a new worst-case analysis for one of these
recovery algorithms, Iterative Hard Thresholding (IHT) [3].
While previous recovery results analysed progress of the
algorithm from one iteration to the next by means of the
Restricted Isometry Property (RIP) [2], [5], we take a
different approach. We derive two conditions for general
measurement matrices: firstly, by analysing the fixed points
of IHT we obtain a condition guaranteeing at most one fixed
point (namely the original signal). Secondly, we give an
improved condition guaranteeing convergence to some fixed
point. If both conditions are satisfied, it follows that we have
guaranteed recovery of the original signal.

Provided we make the assumption that the measurement
matrix A and the original signalx are independent, the fixed
point condition is especially amenable to statistical analysis.
For the specific case of Gaussian measurement matrices, such
an analysis allows us to derive a quantitative phase transition
for exact recovery, which gives a substantial improvement
over previous results [1].

We also extend the consideration to a variant of IHT with
variable step-size, Normalized Iterative Hard Thresholding
(NIHT) [4]. A similar analysis in this case yields a
further improvement on the phase transition for Gaussian
measurement matrices. This is in fact the first time worst-case
guarantees for NIHT have been quantified in this way.
Figure 1 illustrates the latter results, showing that recovery is
guaranteed asymptotically, with high probability on the draw
of A, for (δ, ρ) values falling below the respective curves.
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Fig. 1. Exact recovery phase transitions for IHT (unbroken), NIHT (dashed),
and the previous RIP analysis of IHT [1] (dash-dot); recovery is guaranteed
(asymptotically) below the curve.

A more realistic model from a practical point of view is
one in which the original signalx is only approximately
k-sparse, and where the measurements are corrupted by noise.
We extend our results in both of these directions, proving
that, with high probability, for(δ, ρ) values below the same
phase transition curve as for exact recovery, the error in
approximation is below some multiple of the unrecoverable
energy of the system. We explicitly quantify this stability
factor for both IHT and NIHT.
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I. M OTIVATION

Iterative Hard Thresholding (IHT) algorithm is a popular sparse
recovery method, known for its simplicity, ease of implementation,
and low computational complexity per iteration. The algorithm can
be described by the following recursion:xi+1 = HK(xi +µΦT (u−
Φxi)), wherei is the iteration count,HK(·) is the projection ontoK-
sparse signals,u ∈ ℜM is the observation vector,Φ ∈ ℜM×N (M ≪
N) is the measurement matrix andµ is a step-size quantity. IHT
method is theoretically well-investigated [1].

In this paper, we describe several modular building blocks to
derive IHT variants with faster convergence, reduced computational
complexity and better phase transition performance.

II. BUILDING BLOCKS

Adaptive step-size selection: Given xi is K-sparse, [2] observes
that the support set of the new estimatexi+1 is included in the set
Si = supp(xi)∪supp(HK(∇I\supp(xi)f(xi))), whereI\supp(xi) is
the set of indices of the non-zero elements outside the set supp(xi).
We propose to use this key information to select a step-sizeµ at each
iteration in closed form as the minimizer of the objective function

f(xi): µ =
‖∇Si

f(xi)‖
2

‖Φ∇Si
f(xi)‖

2 [2]. This adaptive step-size selection,
however, results in more restrictive isometry constants:

Lemma 1: Let δ3k be the smallest number such that(1 −
δ3k)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ3k)‖x‖

2
2 is satsified for all3k-sparse

vectors. Then, in noiseless case, the IHT and HTP [6] methodswith
adaptiveµ selection converge towards the truek-sparse signal if
δ3k < 0.123 andδ3k < 0.2448, respectively. .

We also compare and contrast the other alternative methods for
step-size selection [3].

Memory: Iterative algorithms can use memory (i.e., previous
estimates or gradients) to provide momentum in convergence. The
success of the memory-based approaches depends on the iteration
dependent momentum terms combining the previous estimatesand/or
the gradients. We consider both adaptive and non-adaptive proposals
for memory-based acceleration, and investigate their effects on the
algorithmic approximation guarantees. We illustrate thatmemory size
plays significant role on the convergence speed; by keeping track a
history of previous computations, we can reduce the total run-time
of sparse approximation [4], [5].

Gradient updates on restricted support sets: We also investigate
the impact of greedy gradient updates on restricted supports in
conjunction with the other building blocks. Such updates enhance
the well-characterized (F)HTP, SP, and CoSaMP algorithms.

III. E XPERIMENTAL RESULTS AND DISCUSSION

Figure 1 highlights the differences in convergence speed between
various IHT methods on synthetic data. We use the naming conven-
tion from [2]. Our codes are available athttp://lions.epfl.ch/software.
Convergence plots provide empirical evidence for our claims on faster

convergence and reduced complexity. We also theoreticallyanalyze
the computational trade-offs in detail.
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Fig. 1: Average error per iteration - [avg. # of iterations][avg.
execution time] - Algorithms: IHT(0): adaptiveµ on Si, IHT(2):
IHT(0) + gradient update on supp(xi+1), B-IHT [7], GraDes [8].

Lemma 1 improvesδ3k condition constants presented in [2]
for the corresponding IHT algorithm. Furthermore, we deduce that
µ selection may deteriorate restricted isometry bounds but has a
major impact in stability and convergence speed. Figure 2 depicts
a representative example.
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Fig. 2: Probability of exact recovery with sparse measurement matri-
cesΦ. (a) HTP with µ = 1, (b) HTP with our adaptiveµ selection.
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This work aims at providing theoretical arguments to
compare dictionary learning algorithms. We focus on three
algorithms: the Olshausen and Field algorithm (Ols-DLA) [1],
MOD [2] and K-SVD [3]. We show that the stationary points
of Ols-DLA and MOD are the critical points of the residual
error energy cost function (i.e. points with null gradient,
not necessarily local minima), whereas the set of K-SVD
stationary points is strictly included in the critical point set.
We provide an example of a point where Ols-DLA and MOD
would stop whereas K-SVD can reach a better solution.

Let S be a T ×N matrix of training data. We consider the
following dictionary learning problem

min
Φ,X
‖S − ΦX‖22 (1)

with Φ a dictionary matrix of size T × A and X a sparse
decomposition matrix of size A×N containing at most K �
T non-zero elements in each column.

Both MOD, K-SVD and Ols-DLA minimise the cost func-
tion (1) by alternating updates of the support of X , the values
of the non-zero coefficients in X and the coefficients in Φ.
MOD and Ols-DLA use the Orthogonal Matching Pursuit
algorithm (OMP) [4] to estimate X when fixing Φ, then update
the atoms (columns Φa of Φ) when fixing X:
• Ols-DLA: Φ ← Φ − αRX∗, with R = S − ΦX the

residual and α a fixed learning rate
• MOD: Φ = SX+, with X+ the pseudo-inverse of X
K-SVD also uses OMP to estimate the support of X ,

but it then jointly updates the values of the dictionary and
decomposition coefficients. For an atom Φa and the cor-
responding coefficient line Xa, it defines the patch matrix
P(a) = Rcosupp(a) + Φa ∗ Xa, with cosupp(a) = {n ∈
[1, N ]|Xa

n 6= 0}. Then the atom is updated with the principal
component of its patch matrix:

Φa ← arg max
V

V ∗P(a)P
∗
(a)V Xa ← V ∗P(a)

We investigate the stationary points of these algorithms to
find whether they converge towards the same solutions. If one
of those algorithms converges, then the decomposition support
becomes stationary, so OMP only computes an orthogonal
projection:

∀n,Xsupp(n)
n ← Φ+

supp(n)S (2)

with supp(n) = {a ∈ [1, A]|Xa
n 6= 0}.

If one differentiates the cost function (1),

‖S − (Φ + dΦ)(X + dX)‖22 − ‖S − ΦX‖22
=− 2〈RX∗, dΦ〉 − 2〈Φ∗R, dX〉+ o(‖dX‖2 + ‖dΦ‖2)

one can easily show that the stationary conditions for both
MOD and Ols-DLA are equivalent to setting RX∗ and Φ∗R to
0: the stationary points of MOD and Ols-DLA are the critical
points of the cost function. This equivalence does not hold for
K-SVD. Instead, we have the following lemma:

Lemma 1. The critical points of the cost function are the
where points where each atom Da is an eigenvector of the
matrix P(a)P

∗
(a) (and the decomposition X is orthogonal as

described in Equation (2)).

If an atom is an eigenvector not associated with the highest
eigenvalue, it is stationary for MOD and Ols-DLA but not for
K-SVD. For example, if we set

S =

(
2 2
−1 1

)
Φ =

(
0
1

)
X =

(
−1 1

)
then MOD and Ols-DLA would stop whereas K-SVD would
find the best atom on the next iteration.

This result hints that Ols-DLA or MOD can be used as
initialisations for K-SVD. We got promising results on random
signals generated from a Gaussian dictionary: whereas both all
algorithms only recover the exact dictionary in less than 10%
of the cases, running Ols-DLA followed by K-SVD recovers
the exact dictionary in more than 90% of the cases.1
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I. EXTENDED SUMMARY

Problem: We consider the following bilinear model in the unknowns
X ∈ R

N×L andΦ ∈ R
M×N , which has applications is dictionary

learning, matrix completion, collaborative filtering, compressive sys-
tem calibration, compressive sensing with dictionary uncertainty, and
Bayesian experimental design:

Y = P (ΦX) + W . (1)

In (1), Y are known observations,P(·) accomplishes element-wise
selection or linear projection, andW models additive perturbation.
Please see [1] for further details.

Approach: We take a Bayesian approach to the inference problems
(in particular, posterior estimation) that revolve around the bilinear
model (1). In particular, we leverage the approximate message passing
(AMP) framework of [2], [3] and extend it to the bilinear domain.
Compared to Bayesian approaches that rely on Gibbs sampling meth-
ods or variational inference, the AMP framework allows us to fully
exploit theblessings-of-dimensionality (e.g., the asymptotic normality
and concentration-of-measures) to achieve salient advantages in com-
putation and estimation accuracy. Our “turbo AMP” framework also
allows us to characterize the impact of our message scheduling using
extrinsic information transfer (EXIT) charts, originally developed to
predict the convergence of turbo decoding.

Example Application: For concreteness, we describe the application
of the bilinear model (1) to thecompressive system calibration
problem. Based on the theoretical premise of compressive sensing, a
great deal of research has revolved around the design of sampling
systems, such as Analog-to-Information receivers and Xampling.
The sampling matrices in these systems are pre-designed with
certain desired theoretical properties to guarantee recovery along
with the constraints of hardware implementations. However, when
implementing the mathematical “sampling” operation—here defined
by the matrixΦ—in real hardware, one often introduces what are
effectively perturbations onΦ that create an undesired gap between
theoretical and practical system performance. As a means of closing
this gap, we are interested in jointly learning the true matrixΦ while
simultaneously recovering the signalX.

Suppose, then, that our compressive sensing system produces a
sequence of vector observationsyl (l = 1, . . . , L; collectively
referred asY ) that correspond to a sequence of unknown sparse
signalsxl (collectively,X). We assume that the signal coefficients
{xjl} are drawn i.i.d from a (known) compressible priorxjl ∼ pX(·),
and we model the entries of the true (unknown) sampling matrixΦ

as i.i.d Gaussian with varianceµw and known mean̄Φ. For ease
of description, we assume thatµw is known, that the signalsxl are
canonically sparse, and that the projection operatorP(·) is identity.
This calibration problem yields the factor graph in Fig. 1, to which

we applybilinear AMP in order to generate (approximate) posterior
marginals on the elements ofΦ andX.

This calibration problem can be interpreted as an instance of
dictionary learning, whereby one seeks a sparsifying dictionary
for some training data. In this setting, it is known thatℓ1-norm
minimization can locally identify the correct dictionary (i.e.,Φ) given
L = O

(

N3K
)

training samples, whereK is the “sparsity” ofxl [4].
We note, however, that the computational complexity of this approach
is extremely demanding for large scale problems.

l

k

i
j

{xjl} {yil} {φik}

Fig. 1. An illustration of the factor graph for our message passing solution.

Preliminary Results: Figure 2 shows example results for the applica-
tion of bilinear AMP to the calibration problem. The non-convexity
of the problem is quite apparent from the plots. Here, to generate the
signals, we used an i.i.d Bernoulli-Gaussian prior that generated zero-
mean unit-variance active coefficients with probabilityK/N . The
nominal sampling matrix̄Φ was generated i.i.d Gaussian with zero
mean and1/M -variance, and trueΦ was generated by perturbinḡΦ
with an additive noise of the same distribution.
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Abstract—Blind spectrogram decompositions are commonly used for
tasks such as automatic transcription. In musical spectrograms, signal
elements are highly overlapping in both the time and frequency domains,
presenting difficulties to the decomposition method. The harmonic struc-
ture prevalent in tonal music signals has been exploited in decomposition
methods with positive results. The performance of blind decompositions
for transcription tasks has been shown to be dependent on the relationship
of the learning order to the number of sources in the signal. We
consider structure-aware dictionary learning methods, which have prior
knowledge of the structure and cardinality of the sources.

I. INTRODUCTION

Blind decompositions have been used for musical signal processing
tasks. Often the signal is represented by a magnitude spectrogram S,
and the decomposition seeks, a dictionary of atoms D and a matrix
T consisting of the time support vectors for these atoms, such that

S ≈ DT (1)

where S ∈ <M×N
+ , D ∈ <M×K

+ , T ∈ <K×N
+ , M is the number of

frequency bins, N is the number of time bins and K is the learning
order of the decomposition.

The most commonly used method to perform this decomposition is
Non-negative Matrix Factorization (NMF). Sparse dictionary learning
methods, such as the non-negative variant of the K-SVD algorithm
(NN-K-SVD) [1] have also been used. These methods are constrained
by the selected learning order and encounter similar difficulties when
applied to musical signals, such as single-spike atoms and dual-
source atoms. We also observe the disappearance in T of sources
with infrequent support or relatively low energy, particularly if there
exists in the dictionary an atom representing a highly coherent source
e.g. a higher or lower octave of the same note.

Musical signals contain many harmonic elements and this structure
can be exploited, Harmonic atoms were proposed as groups of
related Gabor atoms, sparse coded with Matching Pursuit for pitch
tracking [3]. Similar works have used dictionaries learnt offline or
harmonic atoms with constrained spectral envelopes. Harmonic signal
decomposition methods have also been proposed, such as a state-of-
the-art transcription method [2] using Bayesian harmonic NMF.

II. STRUCTURE-AWARE DICTIONARY LEARNING

We consider spectrogram decomposition with a priori knowledge
of the number and individual structure of atoms, which we refer to
as structure-aware dictionary learning. This knowledge is encoded in
a binary matrix, I ∈ <M×K

+ , which indicates the harmonic peaks
and sidelobes of each note. The signal decomposition now becomes

S ≈ D′T where D′m,k = Im.kDm,k. (2)

We have implemented structure-aware versions of NN-K-SVD and
NMF [4]. These differ only in filtering by I. In SA-NN-K-SVD,
the atoms are filtered after their individual SVD updates. In SA-
NMF, D is filtered after its multiplicative update. Using spectrograms

composed from a dictionary of synthetic harmonic atoms, experi-
ments were performed in which we attempted to recover the original
dictionary. It was found that dictionary recovery is significantly
enhanced and accelerated using the structure-aware methods.

It was also observed that SA-NN-K-SVD outperformed SA-NMF,
depending on the sparse coder used. Further experiments were
performed with different spectrogram parameters to compare the
structure-aware methods. First we skewed the distribution of the
atoms. Again we found that SA-NMF was outperformed by the SA-
NN-K-SVD. In another experiment, we randomised the shape of the
atoms. This time we found that SA-NMF outperformed the SA-NN-
K-SVD. These results led us to derive a method we refer to as
SANNSMUDL (Structure Aware Non-Negative Sparse Multiplicative
Update Dictionary Learning) using sparse coding to update T , and a
multiplicative update for D. Results to date indicate that this method
improves dictionary recovery relative to the SA-NN-K-SVD and SA-
NMF.

III. CONCLUSION

We have derived a method which performs better than other meth-
ods in our experimental setup. The spectrograms were synthesized
to be highly overlapping and we believe that this method may be
generalizable when the atomic structure supports are relatively sparse.
We aim to further test this method with transcription tasks, building
on work presented in [5]. Further work will include learning structure
from signals, so as to inform this method.
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I. INTRODUCTION

Many applications in signal processing such as audio, physiological
signals, and brain machine interfaces, require digitizing analog signals
from multiple channels. However, designers of such systems are often
faced with restrictions that limit their ability to use multiple analog-
to-digital (A/D) converters. We approach the problem of multi-
channel A/D conversion with the unique concept of using fewer A/D
converters than channels. To the best of our knowledge, no such
approach has been previously proposed.

A naı̈ve approach to the problem involves modulating the analog
signals so that they occupy non over lapping frequency bands and
digitizing the sum of the modulated signal. The main drawback of
such an approach is that it increases the frequency of operation of the
sigma delta A/D converter, adding to power consumption. If several
signals are multiplexed using such an approach, or if the bandwidth
of the underlying signals is large, such an approach may lead to
unfeasible frequency of operation for the sigma delta A/D converter.

In our solution to this problem, we deliberately mix the channels
in such a fashion that we can later separate them. Given M channels
of analog data, we generate N mixtures of the analog data such that
N < M . The A/D conversion is done on the N mixtures. Finally
the mixtures are separated into M digitized channels. We show
that perfect separation of the input signals after A/D conversion is
possible if all input signals are known to have sparse representations
involving no more than a fixed number of atoms drawn from a
known dictionary. Mixing is done by modulating and spreading some
of the input signals so that the total bandwidth of the mixture is
slightly larger than that of the original input signals. Under such a
scenario, signals can be separated using any method for sparse signal
representation. We quantify the amount of bandwidth expansion
needed to achieve signal separation and also discuss the design of
spreading sequences and dictionaries.

II. METHOD DESCRIPTION

We now describe one approach to mixing the signals, based on
bandwidth expansion where we deliberately introduce redundancy in
the mixture. Without lost of generality, we illustrate one example
with two input analog channels and one A/D converter. Given two
signals, S1(t) and S2(t), each with a bandwidth of interest of B Hz,
we first pre-condition the signals followed by mixing and then A/D.
The signals are first low-pass filted to B Hz, and then a modulation
is applied to one of the signals (say S2(t)) so it is now shifted in
the frequency space and spread over a wide frequency band. S1(t)
and the modulated version of S2(t) are mixed together before an
oversampled A/D is applied to the mixture. The modulation and
mixing are illustrated in figure 1. By using a theoretical construction
similar to the one used to establish the restricted isometry property
in compressed sensing, we establish that by slightly expanding the

bandwidth of the mixture relative to that of the underlying input
signals, it is possible to recover the underlying signals exactly after
A/D conversion assuming that we have an algorithm that can recover
the sparsest representation of any given signal. Specifically, for the
two signal case illustrated here, we represent the digitized mixture
signal using a union of the dictionary matched to the input signals
and a spread version of that dictionary. Atoms in the spread version
are obtained by spreading in discrete time the atoms in the original
dictionary using the spreading sequence corresponding to the one
applied to the input signal in the analog domain. Assuming that
we can find the exact sparse representation of the mixture, signal
separation is achieved by identifying the dictionary atoms selected to
represent the mixture. Coefficients corresponding to spread atoms are
associated with the signal that was spread before mixing. All other
coefficients are associated with the signal that was not. We provide
several examples of A/D conversion using synthetic sinusoidal data.
We also present experimental results corresponding to digitizing two
independent audio signals with a 3 KHz bandwidth that demonstrate
an ability to achieve signal to noise ratios in the 55-60 dB range using
a second order sigma delta A/D converter and the method of [1] and
the references therein, for computing sparse signal representations.

!

Fig. 1. Mixing analog signals using modulation.
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Fig. 2. Un-mixing analog signals using source separation and demodulation
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I. INTRODUCTION

The new field of compressed sensing (CS) [1] has stirred interest
in designing hardware that samples at the information rate. After
CS was introduced in 2004, hardware devices were immediately
proposed [2]. CS has been used to speed up traditional imaging, such
as MRI, and it has increased interest in general sparse approximation
techniques; however, as of 2011, there are few hardware devices
that use the principles of CS to implement incoherent measurements.
There are two related reasons for this: most mathematicians who
propose measurement schemes lack the understanding of what the
engineering bottlenecks are, and secondly, the engineering require-
ments are quite non-standard since, for example, the SNR of the
system is no longer a simple calculation.

One type of CS device that has been proposed is the random
modulation pre-integrator (RMPI) [3]. The RMPI samples a wide-
band signal, with up to 2.5 GHz bandwidth, using 8 independent
channels, each with a 50 MHz ADC, so the total sampling rate is
12.5× lower than the Shannon-Nyquist limit. Because the low-rate
sampling induces aliasing, each channel uses a pseudo-random bit
sequence (PRBS) to spread the spectrum of the incoming signal,
followed by an integration. See Figure 1.

We present an implementation of the RMPI in 90 nm CMOS.
This is not just an abstract academic idea, but a real ADC device
with 8 ENOB, and required significant engineering achievements.
Our results are highly useful for teams working on other compressed
sensing architectures. Specifically, we discuss

• Design choices. There are subtle issues involved in choosing
the number of channels, the periodicity of the PRBS, and the
integrator. Central to the design is a departure from the simplistic
mathematical models.

• Robust calibration. Because the design does not exactly follow
a model, it is necessary to calibrate the system in order to
characterize its step response. In practice, calibration is difficult
because the input signal is not known exactly. To overcome this,
we introduce a method for phase-blind calibration.

• Reconstruction techniques. To maximize the performance of
the system, many reconstruction techniques are needed. We
discuss `1 analysis and synthesis formulations, how to perform
reweighting, choice of dictionary, and windowing. We also
alleviate fears raised by [4] that the system is sensitive to “off-
grid” frequencies.

II. PREVIOUS WORK

RMPI devices have been studied by several groups [5]–[7], but
a high-bandwidth device has yet to be manufactured and shown to

be functional. A related design, the modulated wide-band converter
(MBC) [4], which follows the Xampling methodology, has been
fabricated, and is predicted to reconstruct banded signals of up to
120 MHz from a 1 GHz bandwidth range using only 280 MHz overall
sampling rate. The hardware prototype has been tested up to 1.6 MHz
of bandwidth. Because the signal model consists of inputs with time-
invariant statistics, it is possible to achieve arbitrarily high SNR of
the frequency support by collecting more time samples.

Our goal is even more ambitious: to recover highly non-stationary
signals, such as radar pulses which only occur for 200 ns. Because
there are so few measurements, simple techniques such as OMP are
not sufficient, and we use powerful variants of `1 recovery.
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Fig. 1. Diagram of the multi-channel RMPI.
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SUMMARY

Compressed sensing (CS) has primarily two modes of
acquiring measurements of sparse signals. One is by taking
inner product measurements described by an underdetermined
linear system of equationsy = Ax, wherey ∈ R

m represents
the measurements gathered about a sparse signalx ∈ R

n of
interest. In this setting, the matrixA ∈ R

m×n is chosen to
possess a particular property, namely the restricted isometry
property, and the measurements are acquired by computing
inner products betweenx and the rows ofA. Alternatively,
one can acquire CS measurements by samplingx at ran-
dom locations (random point evaluations). In this case, an
underdetermined linear system also relates the measurements
to a higher dimensional representation, but the measurements
areacquired differently—random samples are not acquired as
inner products.

This work concerns a structured form of random sampling
and proposes new method to directly recover finite resolu-
tion power spectral density (PSD) estimates of spectrally-
sparse wide-sense stationary random processes. This method
produces estimates at arbitrarily low sampling rates and can
achieve better tradeoffs between system complexity (as defined
below) and resolution than existing methods.

PSD estimate. Let x(t) be a real valued, zero-mean wide-
sense stationary random process with power spectral density
function Pxx(ω). AssumePxx(ω) is bandlimited toW/2 Hz
and spectrally sparse, i.e., assume its support has Lebesgue
measure that is small relative to the overall bandwidth.

For a fixed time interval1/W and for a suitable positive
integerL, consider samplingx(t) at time instantst = (nL +
ci)/W for 1 ≤ i ≤ q, n ∈ Z

+, where the time offsetsci

are distinct, positive real numbers less thanL. Such a scheme
exhibits an average sampling rate ofqW/L Hz and can be
implemented as a multichannel system where channeli shifts
x(t) by ci/W and then samples uniformly atW/L Hz [1].

Let ryayb
(k) denote the cross correlation function of chan-

nelsa andb. It can be then be shown thatryayb
(k) is related

to Pxx(ω) through the linear equation,

ryayb
(k) ∗ ha,b(k)

∣

∣

∣

k=0
=

1

2π

∑

m

e−i
2π
L (ca−cb)m

∫ πW/L

−πW/L

Pxx

(

ω − 2π W
L m

)

dω,

where ∗ denotes convolution andha,b(k) is the impulse
response of an ideal fractional delay digital filter with delay

(ca − cb)/W . Denoting the integrals byPxx(m) and lettingl
index the

(

q
2

)

+1 combinations of pairs(a, b) (includinga = b),
we can form the linear system of equations,u = Ψv, where the

elements ofv ∈ R
L arePxx(m), [Ψ]l,m = 1

2π e−i
2π
L (ca−cb)m,

andu ∈ R
q(q−1)/2+1 contains elements of the above convolu-

tions evaluated at zero.Pxx(m) equals the power ofx(t) in the
mth spectral segment ofPxx(ω) of width πW/L. Collectively,
the set{Pxx(m)} forms a finite resolution approximation to
Pxx(ω). The resolution is determined byL, the period of the
random sampling pattern; largerL implies finer resolution.
Based on the reasonable assumption that more channels im-
plies higher hardware complexity, we takeq, i.e. the number
of channels, to be a measure of system complexity.

Improved tradeoffs through sparsity. Generally speaking,
the above linear system can only be uniquely solved if
q(q − 1)/2 + 1 ≥ L. But with the freedom to independently
chooseq andL, this inequality can be met at arbitrarily low
sampling rates and at arbitrarily high resolutions. With fixed
hardware complexity (fixedq), this relation poses a limitation
on the resolution and sampling rate. For example, withq = 8
and W = 1 GHz, resolution is constrained to125MHz, a
resolution too low for some applications in spectrum scanning.

With the assumption thatPxx(ω) is spectrally sparse, CS
algorithms can tremendously improve this tradeoff, providing
greater resolution for a given level of complexity. Because
PSDs are nonnegative by definition and because the row ofΨ
corresponding toca−ca is a row of1’s, we can avoid the more
computationally intensive CS algorithms, likeℓ1 minimisation,
and simply seek a nonnegative least squares solution [2].

Note that even if the CS reconstruction is exact, what we
recover is a stochastic estimate of the true PSD, regardless
of the resolution. We are in essence trying to discover an
average behaviour of a random process from (ultimately) a
finite number of CS samples, and CS recovery algorithms have
little bearing on this basic fact.

These results have direct application to radio frequency elec-
tromagnetic scanning problems and have potential application
to radio interferometry. There is also a potential to extendthis
estimation approach to purely random sampling.
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Abstract—The synthesis-based sparse representation model for signals
has drawn a considerable interest in the past decade. Such a model
assumes that the signal of interest can be decomposed as a linear
combination of a few columns from a given dictionary. In our work we
concentrate on an alternative, analysis-based model, where an analysis
operator multiplies the signal, leading to a sparse outcome. Our goal in
this work is to learn the analysis operator from a set of signal examples,
and the approach taken is parallel and similar to the one adopted by the
K-SVD algorithm. We demonstrate the effectiveness of the algorithm in
several experiments, treating synthetic data and real images, showing a
successful and meaningful recovery of the analysis operator.

I. BACKGROUND

Signal models are fundamental for handling various processing
tasks, such as denoising, solving inverse problems, compression,
sampling, and more. Among the many ways we have to model signals,
one approach that has found a great popularity in the past decade
is the synthesis-based sparse representation model. In this model, a
signal x ∈ Rd is modeled as being the outcome of the multiplication
x = Dα, where D ∈ Rd×m is a dictionary – its columns are signal
prototypes (atoms) that we use to compose the signal. We typically
consider a redundant dictionary with m > d. The vector α ∈ Rm is
the signal’s representation, and a fundamental feature in this model
is the expectation that it is sparse, i.e. ∥α∥0 = k ≪ d. This implies
that the signals we work on can be composed as linear combinations
of a few atoms from the dictionary [1].

The vast work on this model studied problems such as ways
to estimate the representation from corrupted signals, theoretical
guarantees for such estimates to recover an outcome that is close
to the true solution, and ways to learn the dictionary D from signal
examples. Two popular techniques for this task are the MOD and
K-SVD algorithms [2], [3], [4].

While the synthesis model has been intensively studied, there
is an analysis viewpoint to sparse representations that has been
left aside. The analysis model relies on a linear operator (matrix)
Ω : Rp×d. The key property of this model is our expectation that
the coefficient vector Ωx ∈ Rp is expected to be sparse with ℓ
zeros. These zeroes describe the subspace this signal belongs to.
Assuming that spark(ΩT ) = d+1 (i.e. every set of d rows from Ω
are linearly independent), the signals we model reside in a union
of (d − ℓ)-dimensional subspaces. While this may sound similar
to the synthesis counterpart approach, it is in-fact very different.
Interestingly, relatively little is known about the analysis model, and
little attention has been given to it in recent literature, compared to
the synthesis model (see [6]).

In this paper we focus on the analysis model, and in particular, the
development of an algorithm that would learn the analysis operator Ω
from a set of examples X = [x1,x2, . . . ,xN ], so that the analysis
coefficients ΩX are sparse. Very little is known about this problem,
and only recently work has started on this task [7], [8]. In this work
we propose a novel algorithm that is parallel to the K-SVD in its
rationale and computational steps. More on this work contribution is
given hereafter.

II. OUR WORK CONTRIBUTION

Given the training set X, we assume that every example is a noisy
version of a pure analysis signal. Thus, xi = zi +ei, where ei is an
additive noise ∥ei∥2 ≤ ϵ, and zi satisfies ∥Ωzi∥ = p− ℓ. Thus, our
goal is to use the given set of examples to find both the clean signals
{zi}i and the operator Ω, by solving the following optimization task:

min
{zi}i,Ω

∑
i

∥xi − zi∥22 s.t. ∥Ωzi∥0 = p− ℓ. (1)

Notice the resemblance between this goal and the one used for the
synthesis model,

min
{αi}i,D

∑
i

∥xi −Dαi∥22 s.t. ∥αi∥0 = k.

Similar to the solution adopted in the synthesis case, the solution
of (1) is obtained in our work by iterating between an update of
{zi}i and an update of Ω. Given the current Ω, the clean signals
zi are found by a novel sparse-coding algorithm that greedily gather
the zeros of the vector Ωzi. Fixing these signals, the update of Ω is
done row-by-row, by gathering for each row all the examples that are
believed to be orthogonal to it, forming a matrix and computing the
singular-vector that corresponds to its smallest singular-value. This
resembles the synthesis K-SVD approach (with the difference that
in the synthesis model we take the singular vector that corresponds
to the largest singular-value). We demonstrate the effectiveness of
the algorithm in several synthetic experiments and tests on natural
images, showing a successful and meaningful recovery of the analysis
operator in all these cases.
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Abstract—We consider the problem of learning low-dimensional signal
models from a collection of training samples. The mainstream approach
would be to learn an overcomplete dictionary to approximate the training
samples using sparse synthesis coefficients. This famous sparse model

has a less well known counterpart, in analysis form, called the cosparse
analysis model. In this new model, signals are characterized by their

parsimony in a transformed domain using an overcomplete analysis
operator. We propose to learn an analysis operator from a training corpus
using a constrained optimization program based on L1 optimization. We
derive a practical learning algorithm, based on projected subgradients,

and demonstrate its ability to robustly recover a ground truth analysis

operator, provided the training set is of sufficient size. A local optimality

condition is derived, providing preliminary theoretical support for the
well-posedness of the learning problem under appropriate conditions.

I. COSPARSITY AND COSPARSE ANALYSISMODEL

In the cosparsity model [1], signal y ∈ R
m is characterized by

its parsimony in a transformed domain, using a given overcomplete

transform Ω ∈ R
n×m, n > m, called the analysis operator. In this

setting, the concept of sparsity is slightly different to the standard

definition of sparsity, as the number of zero elements in z = Ωy,

p = n−‖z‖0 has a more important role in analyzing the model, and
it has been named cosparsity [1].

II. ANALYSIS OPERATOR LEARNING (AOL)

When a set of samples Y = [yi]i∈I , is given, a question is how
can we choose a suitable analysis operator Ω, which provides the
highest cosparsity for Y? This is the central problem we consider.

The standard approach for many similar model adaptation prob-

lems, is to define a relevant optimization problem such that its

optimal solution promotes maximal sparsity of Z := ΩY. A convex

sparsity promoting penalty f(Ω) is the sum of absolute values of
Z, i.e. f(Ω) = ‖ΩY‖1. Unconstrained minimization of f(Ω) has
some trivial solutions: a solution for such a minimization problem is

Ω = 0! A suggestion to exclude such trivial solutions is to restrict

the solution set to an admissible set C and reformulate AOL as, e.g.

min
Ω
‖ΩY‖1 s. t. Ω ∈ C (1)

It is crucial to make a clever choice of the constraint for the

problem (1) to exclude such deficient solutions. After explaining

why some standard constraints are not enough, we propose a com-

bined constraint, which is the Uniform Normalized Tight Frame

(UNTF) [2].

III. PROJECTED SUBGRADIENT ALGORITHM FOR AOL

Subgradient methods have often been used to minimize convex

objectives, when the solution is sought only with a few significant

figures. As the problem is here constrained, we use the projected

This work is supported by EU FP7, FET-Open grant number 225913 and
EPSRC grant EP/F039697/1.

subgradient method. The subgradient of the objective is simply

∂f(Ω) = sgn(ΩY)YT , where sgn is the extended sign function.
Projection of an operator onto the set of uniform normalized frames

can be easily found by renormalizing the columns of the operator.

Projection of a full rank matrix onto the tight frame manifold is also

easy and can be done using a singular value decomposition of the

linear operator [3].

A point on the intersection of the uniformly normalized set and

the set of tight-frames, which is the proposed UNTF constraint set,

can often be found by alternatingly projecting onto these sets. Note

that, there is no guarantee for convergence to an UNTF using this

method, but this technique practically works very well [3]. As the

projected subgradient continuously changes the current point, which

needs to be projected onto the UNTF’s, we only use a single pair of

projections at each iteration of the algorithm. In practice the solutions

seem to converge to UNTF’s. A pseudocode of this algorithm is as

follows,

1: initialization: k = 1, Kmax, Ω
[0] = 0, Ω[1] = Ωin, γ, ǫ ≪ 1

2: while ǫ ≤ ‖Ω[k] − Ω[k−1]‖F and k ≤ Kmax do

3: ΩG = ∂f(Ω[k])

4: Ω[k+1] = PTF

n

PUN

n

Ω[k] − γΩG

oo

5: k = k + 1
6: end while

7: output: Ωout = Ω[k−1].

IV. EMPIRICAL EVIDENCE

A pseudo-random UNTF operator Ω0 ∈ R
24×16 was used to

generate l = 768 training samples, with different cosparsities, by
randomly selecting a normal vector in the orthogonal complement

space of p randomly selected rows of Ω0. We started the simulation

with a different pseudo-random admissible Ωin, iterated 50000 times,
and the average recovery of the rows of Ω0, for different cosparsities

and 100 trials, is shown below as a function of the cosparsity of the

signals.
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Abstract—We introduce new methods to tackle the problem of hybrid
linear learning—learning the number and dimensions of the subspaces
present in a collection of high-dimensional data and then determining a
basis or overcomplete dictionary that spans each of the subspaces. To
do this, we pose this problem as the estimation of a set of points on the
Grassmanian manifold G(k, n), i.e., the collection of all k-dimensional
subspaces in Rn. In order to estimate the subspaces present in the
data, we couple the use of consensus methods for robust parameter
estimation with sparse recovery for intelligent selection of sample sets.
We demonstrate that the coupling of these two ideas is essential for:
(1) extending the performance of current subspace learning methods to
settings where shared structures exist between subspaces, as well as (2)
providing concrete guarantees that specify when consensus will be formed
on the true subspace structures present in the data in polynomial time.
We demonstrate the utility of these methods for segmenting multispectral
images and learning block-sparse dictionaries.

I. INTRODUCTION

Linear and nonlinear dimensionality reduction techniques (PCA
and Isomap respectively), are typically founded on the assumption
that global—and in some cases smooth—geometric structure exists
amongst a collection of high-dimensional point cloud data. How-
ever, in many settings where ensembles of data arise from either
heterogeneous sources or are measured under variable observational
conditions, the resulting data exhibit geometric structure that cannot
be succinctly described by a global model. Instead, datasets of this
nature admit hybrid geometric structure that are best described by a
union of distinct linear and/or nonlinear structures.

One important instance of a hybrid geometric model is referred
to as a hybrid linear model (HLM). As the name suggests, a HLM
can be used to model data that live on a union of linear structures;
in the case where each of these structures passes through the origin,
we say that these signals live on a union of subspaces. In addition
to k-sparse signals that live on a combinatorial union of

`
n
k

´
k-

dimensional subspaces, a wide variety of datasets have been shown
to manifest union of subspace models (or live on unions of affine
planes), including scenes under various illumination conditions [1],
image ensembles [2], and the trajectories of multiple moving objects
[3].

Union of subspace models have been employed in a wide-range
of applications in signal processing, machine learning, and computer
vision, including the representation and denoising of sparse signals
and also in morphological components analysis for signal separation.
Even more recently, HLM’s have been leveraged for the sampling
and recovery of structured sparse signals [4], [5] from incomplete
or compressive measurements. However, in all of these settings, the
generative model for the data must be known a priori, i.e., the
collection of orthonormal bases or overcomplete dictionaries that gave
rise to the data must be known.

In this work, we tackle the problem of learning HLMs directly from
point cloud data that are assumed to lie on a finite union of subspaces.
We introduce new methods for learning HLMs or learning the number
and dimensions of the subspaces present in a collection of point cloud
data and then determining a basis or overcomplete dictionary that
spans each of the subspaces. Whereas previous formulations of the
subspace learning problem aim to segment the data into disjoint sets

according to the subspace membership of each point, we pose the
problem of learning HLMs as the estimation of a set of points on the
Grassmanian manifold G(k, n), where each point on the Grassmanian
manifold represents a k-dimensional subspace in Rn.

To find a robust estimate of the subspaces present in data, we
employ a consensus-based approach [6] which attempts to find
agreement (consensus) upon a subspace estimates across multiple
sample sets selected from the data. In contrast to previous consensus-
based approaches for subspace learning that either employ sample
sets selected at random [7] or more sophisticated sample selection
procedures [8], we propose the use of sparse recovery for efficient
sample set selection. This is done by finding a sparse representation
of each of our data points with respect to the overcomplete dictionary
consisting of the remaining points in the dataset as in [9]. Following
this subset selection procedure, we determine the mapping of the
span of each of the support set onto G(k, n) and then look for the
estimates that agree across multiple points in the dataset.

In order to study our proposed approach, we extend standard
analyses for sparse approximation algorithms [10] to the case where
sparse representations must be formed from a union of overcomplete
sub-dictionaries where each sub-dictionary spans a low-dimensional
subspace. We show that under certain conditions on the principal
angles between the subspaces in our HLM, we can guarantee that
both orthogonal matching pursuit (OMP) and basis pursuit (BP) will
recover a sufficient number of sample sets that will in turn yield
correct estimates of the true subspaces that generated our data.

Although our proposed method weds two different existing ideas
that are currently employed in subspace learning, we demonstrate
that the coupling of these two ideas is essential for: (1) extending
the performance of state-of-the-art subspace clustering methods [9] to
settings where shared/overlapping structures exist between subspaces,
as well as (2) providing guarantees that describe when consensus will
be formed in polynomial time. Following our analysis of sample set
selection with sparse recovery methods, we demonstrate the utility
of these methods for segmenting multispectral images and learning
block-sparse dictionaries.

REFERENCES
[1] R. Basri and D. Jacobs, Lambertian Reflectance and Linear Subspaces. IEEE Trans.

PAMI, 25 (2), pp. 218–233, Feb 2003.
[2] R. Garg, H. Du, et al., The Dimensionality of Scene Appearance. ICCV 2009.
[3] J. Yan and M. Pollefeys, A general framework for motion segmentation: Independent,

articulated, rigid, non-rigid, degenerate and non- degenerate. ECCV 2006.
[4] T. Blumensath, M. Davies, Sampling theorems for signals from the union of finite-

dimensional linear subspaces. IEEE Trans. on Info. Theory, 55 (4), April 2009.
[5] R. Baraniuk, V. Cevher, M. Duarte and C. Hegde, Model-Based Compressive

Sensing. IEEE Trans. on Info. Theory, 56, pp. 1982–2001, April 2010.
[6] M. Fischler and R. Bolles, Random Sample Consensus. Comm. of the ACM, 24,

pp. 381395, June 1981.
[7] A. Yang, S. Rao, and Y. Ma, Robust Statistical Estimation and Segmentation of

Multiple Subspaces. CVPR Workshop 2006.
[8] T. Zhang, A. Szlam, Y. Wang, G. Lerman. Hybrid Linear Modeling via Local Best-fit

Flats. Arxiv preprint, 2010.
[9] E. Elhamifar and R.Vidal, Clustering disjoint subspaces via sparse representation.

ICASSP, 2010.
[10] J.A. Tropp, Greed is good: Algorithmic results for sparse approximation. IEEE

Trans. Inform. Theory, vol. 50, num. 10, pp. 2231-2242, Oct. 2004.

75



Evaluating Dictionary Learning for Sparse Representation
Algorithms using SMALLbox

Ivan Damnjanovic, Matthew E. P. Davies and Mark D. Plumbley
School of Electronic Engineering and Computer Science

Queen Mary University of London
Mile End Road, London, E1 4NS, UK

Email: {name}.{surname}@eecs.qmul.ac.uk

Abstract—SMALLbox is an open source MATLAB toolbox aiming at
becoming a testing ground for the exploration of new provably good
methods to obtain inherently data-driven sparse models, which are able
to cope with large-scale and complicated data.

I. SMALLBOX - EVALUATION FRAMEWORK

The field of sparse representations has gained a huge interest in
recent years, in particular in applications such as compressed sensing,
image de-noising and source separation. We are witnessing a growing
number of sparse representation algorithms that are becoming freely
available in the research community [1-2]. This growth raised a
necessity for an environment for proper testing and benchmarking.
The SPARCO framework [3] partially addresses this problem by pro-
viding a large collection of imaging, signal processing, compressed
sensing, and geophysics sparse reconstruction problems for testing
these algorithms. It also includes a large library of operators that can
be used to create new test problems.
Sparse representation approaches find the sparse solution in a given
dictionary, but give suboptimal solution in many scenarios in which
no suitable model is known. Many algorithms exist that aim to
solve the sparse representation dictionary learning problem [4-5]. The
main driving force for this work is the lack of a toolbox such as
SPARCO for dictionary learning problems. Recognising the need of
the community for such a toolbox, we set out to design SMALLbox
- a MATLAB toolbox with three main aims:

• to enable an easy way of comparing dictionary learning algo-
rithms,

• to provide a unifying API that will enable interoperability and
re-use of already available toolboxes for sparse representation
and dictionary learning,

• to aid the reproducible research effort in sparse signal represen-
tations and dictionary learning.

To enable re-use of already developed problems from SPARCO, the
main interoperability is given through the “Problem” structure which
in SMALLbox can be defined either as a sparse representation or
dictionary learning problem. In generating a problem, some of the
utilities can be used to decode a dataset and prepare a test signal or
a training set for dictionary learning. The dictionaries can be either
defined or learned using dictionary learning algorithms. In the former
case, they can be given as implicit dictionaries, as a combination of
the given operators and structures, or explicitly in the form of a
dictionary matrix. In the latter case, they are learned from training
data. Once the dictionary is set in the problem, the problem is ready
to be solved by one of the sparse representation algorithms.
SMALLbox has been designed to enable an easy exchange of
information and a comparison of different modules developed through
a unified API structure. The structure was made to fulfil two main

goals. The first goal is to separate a typical sparse signal processing
problem into three meaningful units:
a) problem specification (preparing data for learning the structures,

representation and reconstruction),
b) dictionary learning (using a prepared training set to learn the

natural structures in the data) and
c) sparse representation (representing the signal with a pre-specified

or learned dictionary).
The second goal is to provide a seamless connection between the

three types of modules and ease of communication of data between
the problem, dictionary learning and sparse representation parts of
the structure. To achieve these goals, SMALLbox provides a “glue”
structure to allow algorithms from different toolboxes to be used with
a common API.
The SMALLbox evaluation framework is implemented as a MAT-
LAB toolbox, which can be downloaded from http://small-project.eu
and is in the form of an archive containing the SMALLbox directory
structure and necessary MATLAB scripts. To enable easy comparison
with the existing state-of-the-art algorithms, installation scripts will
download third party toolboxes as required. In addition, the code
is well documented with examples giving step-by-step instructions
of how to implement new problems or introduce new sparse-
representation and dictionary learning algorithms to the toolbox.
These examples are built upon the set of test problems already
implemented in SMALLbox. Since SMALLbox is an evaluation
framework of the EU FET SMALL project, more problems, solvers
and dictionary learning techniques that are developed will be included
in SMALLbox as the project proceeds.
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Abstract—We introduce a unified framework for the restoration of
distorted audio data, leveraging the Image Inpainting concept and

covering existing audio applications. In this framework, termed Audio

Inpainting, the distorted data is considered missing and its location is

assumed to be known. We further introduce baseline approaches based
on sparse representations.

For this new audio inpainting concept, we provide reproducible-
research tools including: the handling of audio inpainting tasks as

inverse problems, embedded in a frame-based scheme similar to patch-

based image processing; several experimental settings; speech and music

material; OMP-like algorithms, with two dictionaries, for general audio
inpainting or specifically-enhanced declipping.

I. INTRODUCTION

Inpainting is a task proposed in the field of image processing: a

set of missing pixels is reconstructed from the other reliable pixels

of the image. Inpainting can be generalized as a problem of missing

data estimation and techniques for image inpainting can be adapted

to inpainting of other kinds of signals: one observes a partial set

of reliable data while the remaining unreliable data is considered

missing and is estimated from the reliable data. In particular, we

consider Audio Inpainting [1] as a general task that covers a family

of audio applications, including click removal, declipping, packet

loss concealment and several applications for the restoration of

time-frequency coefficients. We present works for audio inpainting

in the time-domain [1], [2] and provide contributions on how to

process audio signals in this context, which applicative scenarios and

benchmarks are worth addressing and how sparse representations can

solve those problems efficiently.

II. AUDIO INPAINTING IN TIME DOMAIN

A. Global and local formulation of Audio Inpainting

Let us consider a vector s ∈ R
L of audio data. We only observe a

subset of reliable samples yr = Mrs, where yr ∈ R
L

′

, L′ < L and

Mr is the so-called measurement matrix obtained from the L × L

identity matrix by selecting the rows associated with the observed

reliable coefficients in s. The audio inpainting problem is defined as

the recovery of the original signal s based on the knowledge of:

1) the reliable data yr,

2) the support of the missing data (or, equivalently, Mr),

3) additional information about the observed signal,

4) and, optionaly, information about the missing data (e.g. in the

case of clipping below).

As in many audio processing tasks and similarly to patch-based

image processing, the signal can be locally modeled and processed:

it is segmented into frames; each frame is then inpainted; the full

restored signal is finally synthesized using an overlap-add method.

Thus, the above global formulation of the inpainting problem can be

straightforwardly translated locally at the frame level.

B. Audio Inpainting Problems

We propose several scenarios or Problems in which new in-

painting algorithms can be compared against existing ones. They are

related to speech or music restoration in different applications.

1) Isolate-sample-to-large-hole Problem: audio signals are de-

graded by periodically removing Nmiss samples and performance are

assessed as a function of Nmiss. Small values of Nmiss represent the

click removal problem while large values of Nmiss are simulating the

packet loss concealment problem.

2) Missing-sample-topology Problem: for a fixed number of miss-

ing samples Nmiss in a frame, a segments of b consecutive missing

samples must be inpainted, where a × b = Nmiss. The performance

is then reported as a function of the hole size b.

3) Declipping Problem: the missing samples are those beyond the

clipping level θclip, such that the observation at time t is yr(t) = s (t)
if |s (t)| < θclip, yr(t) = sign (s (t)) θclip otherwise.

III. BASELINE DICTIONARIES AND SOLVERS

We propose sparsity-based approaches to address the Audio In-

painting problems described in Section II-B. Two dictionaries known

to provide good models for audio waveforms are used: a discrete

cosine transform dictionary, where phases are locked, and a free-

phase Gabor dictionary. As a Solver, the inpainting version of the

OMP algorithm is used to inpaint audio frames. We propose an

enhancement for audio declipping, where the missing samples are

constrained to have an amplitude beyond the clipping level.

IV. MATERIAL FOR REPRODUCIBLE RESEARCH

For reproducible-research purposes, we provided GPL Matlab code

and Creative Commons data related to the presented works and

arranged in a Problems/Dictionaries/Solvers architecture as in [3]:

• a series of Problems described in Section II-B, including exper-

iment generation, result display and speech and music datasets;

• an analysis/synthesis scheme to address the Problems by just

inserting any frame-level inpainting solver (see Section II-A);

• the Dictionaries and Solvers proposed in Section III.
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I. INTRODUCTION

Let x ∈ RN be a target vector with at most k nonzero entries.
We wish to recover the k-sparse vector x from the measurements
y = Ax ∈ Rn where A is an n×N matrix. This can be framed as
finding the solution to the intractable, combinatorial problem

min ‖x‖0 subject to y = Ax. (1)

where ‖·‖0 is the nonzero-counting measure.Under certain conditions,
even simple iterative support recovery algorithms will return the exact
solution to (1). In these situations, one wishes to employ an algorithm
with guaranteed recovery capabilities but with low computational
complexity. It is also well-known that linear programming can be
used to solve the `1-minimization problem as a convex relaxation
of (1). While `1-minimization has better theoretical and empirical
guarantees on recovery than do greedy algorithms, it is often reported
to be computationally more expensive.

II. GPU ACCELERATED GREEDY ALGORITHMS

With the introduction of graphical processing units (GPU) specifi-
cally designed for high performance computing, the computational
burdens of solving (1) have been dramatically reduced. Lee and
Wright [1] utilized this massively parallelized architecture to ac-
celerate the SpaRSA algorithm which iteratively solves the `1-
minimization problem in lieu of (1). Building off of their work,
we have implemented three greedy algorithms in this heterogeneous
CPU-GPU computing environment, namely Hard Thresholding, Iter-
ative Hard Thresholding (IHT) [2] and Normalized IHT (NIHT) [3].
These GPU-accelerated greedy algorithms running on an Nvidia Tesla
C2050 demonstrate speedups of over 50 times a standard implementa-
tion executing on a state-of-the-art 6-core Intel Xeon 5650 CPU. The
parallelized matrix multiplication transfers the computational burden
to the support set identification step in each iteration of a greedy
algorithm; these GPU-based algorithms employ modifications of the
standard support identification techniques to exploit the advantages
of the GPU.

III. EMPIRICAL WEAK PHASE TRANSITIONS

A motivating factor in developing the GPU accelerated greedy
algorithms is the ability to perform large scale testing. Most greedy
algorithms have a theoretical recovery guarantee based on the re-
stricted isometry property. Comparing the efficacy of these theoretical
results in terms of a strong phase transition curve, which separates
the unit square into a region of guaranteed recovery and a region
where recovery is not guaranteed, was performed in [4], [5]. These
strong phase transitions are too pessimistic and these algorithms have
resisted a formal average case analysis. An empirical weak phase
transition was found in [6] although either the problem dimensions
were small (N ≤ 4000) or the number of tests was small (10 tests for

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k/n

pr
ob

ab
ilit

y 
of

 re
co

ve
ry

δ=1/4, n=2j for j=8...19

Fig. 1. Empirical Weak Phase Transition for NIHT using a random selection
of rows from the DCT with δ = 0.25.

N = 219). With the GPU-accelerated greedy algorithms, large-scale
testing with large problem dimensions is now possible and reveals
the behavior of the algorithms on large problems. For example, the
problem dimensions can be scaled up to accurately determine the
value of ρ which is the weak phase transition point; this value of ρ
is higher than the 50% success point found by testing smaller problem
dimensions. This is demonstrated in Fig. 1 when A is a random subset
of rows from a DCT.
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I. INTRODUCTION

Principal component analysis (PCA) [1] is a common method for
identifying structure in high-dimensional data. As principal compo-
nents are defined by directions of high variance in the observations,
PCA is highly sensitive to outliers in the data. This observation
has led to many approaches to robust PCA [2]; unfortunately, these
proposals are often based on intractable optimization problems or
lack a principled foundation.

Here, we propose new approaches to the robust PCA problem
that can be solved using semidefinite programs. The first method,
maximum mean absolute deviation rounding (MDR), takes a greedy
approach to the problem of finding directions of maximum spread.
Our second proposal, the low-leverage decomposition (LLD), uses a
convex optimization problem to split the observed data into a low-
leverage matrix and a corruption matrix.

II. MAXIMUM MEAN ABSOLUTE DEVIATION ROUNDING

Suppose we have n observations xi, each of dimension p. Assum-
ing that the data is centered, the top principal component is defined
to be the vector that maximizes the empirical variance of the data,
that is

vPCA = arg max
‖v‖2=1

nX
i=1

| 〈xi,v〉 |2 (1)

Equivalently, vPCA is the dominant right singular vector of the n×p
matrix X whose rows correspond to the observations xi.

The squared inner-product in (1) may give overwhelming weight
to outlying observations. Our proposal therefore replaces the squared
inner-product with the magnitude of the inner-product:

vMD = arg max
‖v‖2=1

nX
i=1

| 〈xi,v〉 |. (2)

This type of approach to robust PCA has been studied in many
works, e.g. [3], but there are no known algorithms for computing
vMD with guarantees of efficiency or approximation quality. By
recasting our proposal as an operator norm, we show that it is indeed
computationally hard to compute even the value of the maximum
in (2).

Despite the intractability of computing vMD exactly, we show that
a semidefinite relaxation of the problem gives an good upper bound
on the maximum value in (2), and moreover we give an efficient
randomized method that determines a unit-norm vector vMDR such
that X

i

| 〈xi,vMDR〉 | ≥ (1− ε)
r

2

π

nX
i=1

| 〈xi,vMD〉 |

for any ε > 0, except with arbitrarily small probability. We also show
how to compute additional components using a greedy orthogonal
restriction method, and show that a state-of-the-art algorithm [4] can
solve the problem in practice.

III. LOW-LEVERAGE DECOMPOSITION

Our second proposal comes from the formulation of the robust PCA
problem as an optimal low-rank model for the data. Using well-known
group sparsity and low-rank heuristics, we define a decomposition of
the data matrix X whose rows are the observations xi as the optimal
point of the convex optimization program

minimize
P

i σi(P ) + γ
P

j ‖cj‖
subject to P + C = X

, (3)

where the vectors ci are the rows of C and σi(P ) is the ith singular
value of the matrix P . This semidefinite program is similar to the
rank-sparsity decomposition introduced in [5].

We show that the optimal point (P ∗,C∗) in (3) has the property
that the leverage scores of the recovered observations P ∗ are bounded
above by γ2. Additionally, we describe an alternating direction
method of multipliers (ADMM) algorithm that provides good results
for practical computation of the LLD [6].

We conclude our work with some numerical examples that compare
several popular robust PCA approaches against MDA and LLD. This
talk is based on work of the authors [7].
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Abstract—We present an approach to simultaneously separate and
reconstruct signals from a compressively sensed linear mixture. We
assume that the signals have a common sparse representation. The
approach combines classical Compressive Sensing (CS) theory with a
linear mixing model. Since Blind Source Separation (BSS) from a linear
mixture is only possible up to permutation and scaling, factoring out these
ambiguities leads to the problem of `1-minimization over the so-called
oblique manifold. We discuss the occurring cost function and propose a
geometric conjugate subgradient method to solve the problem.

I. INTRODUCTION

The problem of recovering signals from only the mixed obser-
vations without knowing the priori information of both the source
signals and the mixing process is often referred to as Blind Source
Separation (BSS), cf. [1]. Different BSS methods are used in various
challenging data analysis applications, such as functional Magnetic
Resonance Imaging (fMRI) analysis and microarray analysis. In order
to achieve reasonable performance, prominent methods, e.g. Indepen-
dent Component Analysis (ICA), usually require a large number of
observations [2]. Unfortunately, the availability of a large amount of
data samples can not be guaranteed in many real applications, due to
either cost or time issues.

The theory of compressed sensing (CS), cf. [3] shows that, when a
signal is sparse (or compressible) with respect to some basis, only a
small number of samples suffice for exact (or approximate) recovery.
It is interesting to know that the concept of sparsity has also been used
as a separation criterion in the context of BSS [4]. Although a family
of efficient algorithms in the probabilistic framework are proposed
therein, the scenario with compressively sensed samples has not been
studied and thus differs from our approach. In this work, the authors
are interested in separating sparse signals which are compressively
sampled.

II. PROBLEM DESCRIPTION

For the sake of convenience of presentation, signals are represented
as column vectors, instead of the conventional row vectors. The
instantaneous linear BSS model is given as follows

Y = SA, (1)

where S = [s1, . . . , sm] ∈ Rn×m denotes the data matrix of m
sources with n samples (m� n), A = [a1, . . . , ak] ∈ Rm×k is the
mixing matrix of full rank, and Y = [y1, . . . , yk] ∈ Rn×k represents
the k linear mixtures of S. Here, we consider the scenarios with
m ≥ k, i.e., the number of observed mixtures is less than or equal
to the number of sources. The task of standard BSS is to estimate
the sources S, given only the mixtures Y . We refer to [5] for more
details.

We assume that all sources si ∈ Rn, for i = 1, . . . ,m, have sparse
representations with respect to the same basis, i.e., given Ψ ∈ Rn×n

a basis of Rn, referred to as representation basis, each source si is
assumed to have a qi-sparse representation with respect to Ψ, denoted
by xi ∈ Rn, i.e.

si = Ψxi, (2)

or more compactly as
S = ΨX, (3)

where X = [x1, . . . , xm] ∈ Rn×m.
Now let us take one step further to compressively sample each

mixture yi ∈ Rn individually by a sampling basis Φi ∈ Rpi×n for
i = 1, . . . , k. Then, a compressively sensed observation byi ∈ Rpi of
the i-th mixture is constructed as

byi = Φiyi = ΦiΨXai. (4)

We refer to (4) as the compressively sensed BSS (CS-BSS) model.
The task of our work is then formulated as follows: Given the

common presentation basis Ψ ∈ Rn×n and the compressively sensed
observations byi ∈ Rpi , for i = 1, . . . , k, together with their corre-
sponding sampling bases Φi ∈ Rpi×n, estimate the mixing matrix
A ∈ Rm×k and the sparse representations X ∈ Rn×m. Following
the well-known argument that the mixing matrix A is identifiable
only up to a column-wise scaling and permutation, without loss of
generality, we restrict the mixing matrix A onto the m × k oblique
manifold OB(m, k), which is defined as

OB(m, k) :=
n
A ∈ Rm×k

˛̨
rk(A) = k, ddiag(A>A) = Ik

o
, (5)

where Ik is the k×k identity matrix, and ddiag(Z) forms a diagonal
matrix, whose diagonal entries are those of Z.

It is unavoidable that, in real applications, observations byi are
contaminated by noise. In other words, the equalities defined in (4)
do not hold in general. In the sense of least squares error, we propose
the following cost function

f : OB(m, k)× Rn×m → R,

f(A,X) := ‖X‖1 +

kX
i=1

λi ‖ΦiΨXai − byi‖22 ,
(6)

where the scalars λi ∈ R+ weigh the reconstruction error of each
mixture individually, and balance these errors against the sparsity
term ‖X‖1. In this work, we provide an analysis of the cost
function (6) and propose a geometric conjugate gradient method. The
performance of our proposed approach is investigated by numerical
experiments.
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Abstract—In the first part of this work, based on [2], we develop
a new approach to sparse principal component analysis (sparse PCA).
We propose four optimization formulations of the problem, aimed at
extracting one or several sparse dominant components. While the initial
formulations involve nonconvex functions, we rewrite them into the form
of an optimization program involving maximization of a convex function
on a compact set and propose and analyze a simple gradient method for
solving it (generalized power method). We demonstrate numerically on
a set of random and gene expression test problems that our approach
outperforms existing algorithms both in quality of the obtained solution
and in speed.

A natural extension of the ideas above allows us to construct a
method for finding, simultaneously, jointly sparse approximations to the
eigenvectors associated with the largest and smallest eigenvalues of a
symmetric psd matrix. This problem is equivalent to the Compressed
Sensing problem of finding bounds on the asymmetric Restricted Isometry
constants with the additional new requirement for the respective sparse
eigenvectors to be supported on the same set. We prove a result on the
emergence of joint sparsity in the iterates of the method and show that
in the non-penalized case, the iterates are identical to the normalized
gradients of the iterates of the Cauchy steepest descent method applied
to minimizing a convex quadratic function [1].

I. PRELIMINARIES

Let A = [a1, . . . , an] ∈ Rp×n, with p � n. Let λ̄ (resp. λ) be
the largest (resp. smallest) eigenvalue of S = ATA. Fix γ > 0.

II. GENERALIZED POWER METHOD FOR SPARSE PCA

For simplicity, we focus here on the problem of finding a sparse
approximation z∗ to the eigenvector of S “corresponding” to λ̄. That
is, we seek a sparse unit-norm vector z∗ ∈ Rn such that ‖Az∗‖2 is
large. Consider the following optimization problem:

max{‖Az‖2 − γ‖z‖1 : ‖z‖2 ≤ 1}. (1)

It turns out that the optimal solution z∗ of (1) is given by

z∗ = z/‖z‖2, z(i) = sign(aTi x)[|aTi x| − γ]+, i = 1, . . . , n,

where x is solves the smooth convex maximization problem

max
‖x‖2≤1

n∑
i=1

[|aTi x| − γ]2+. (2)

Note that since p� n, the dimension of the search space is decreased
enormously. It is easy to show that γ ≥ ‖ai‖2 ⇒ z

(i)
∗ = 0, and hence

γ controls sparsity of the solution.
For problems of type (2), i.e., for maximization of a convex

function f over a compact set Q, we propose the following simple
gradient method: Choose x0 ∈ Q and for k ≥ 0 iterate:

xk+1 ∈ arg max{f(xk) + 〈f ′(xk), y − xk〉 : y ∈ Q} (GPM)

This is our main convergence result:

Theorem 1 ([2]). Let f be convex, Q compact and {xi} be the
iterates produced by GPM. Then

min
0≤i≤k

max
y∈Q
〈f ′(xi), y − xi〉 ≤

max f∗ − f(x0)

k + 1
.

If, in addition, f is strongly convex with parameter σf > 0, the
convex hull of Q is strongly convex with parameter σQ, and we define
δf = min{‖s‖∗ : s ∈ ∂f(x), x ∈ Q}, then

∞∑
k=0

‖xk+1 − xk‖2 ≤
2(max f − f(x0))

σQδf + σf
.

III. JOINTLY SPARSE MIN AND MAX EIGENVECTORS

Consider the following optimization problem:

max{xTSy − γ‖(x, y)‖1 : ‖x‖2 = ‖y‖2 = 1, xT y = 0}. (3)

If γ = 0, the optimal value of (3) is 1
2
(λ̄− λ), and if x∗, y∗ are the

optimal solutions, then p = (x∗ + y∗)/
√

2 and q = (x∗ − y∗)/
√

2
are the maximal and minimal eigenvectors of S, respectively. Below
we give a method for (approximately) solving (3) for γ > 0 and
show that γ induces joint sparsity in x and y. Hence, the method
is able to identify a small principal submatrix of S whose extreme
eigenvalues are a good approximation to λ̄ and λ.

Let yγ(x) (resp. xγ(y)) be the optimal solution of (3) for fixed x
(resp. y). Fix unit-norm x0 and consider the following method:

yk = yγ(xk), xk+1 = xγ(yk). (ADM)

Theorem 2. Let w ∈ Rn with ‖w‖2 = 1, u = Sw, L = {tw : t ∈
R}, B = {s : ‖s+ u‖∞ ≤ γ} and

Opt
def
= max{uT z − γ‖z‖1 : ‖z‖2 = 1, wT z = 0}. (4)

If L does not pass through the interior of B, then the solution of (4)
is given by z = d/‖d‖2, Opt =

√
ω(t∗) = ‖d‖2, where

t∗ ∈ arg min
t

[ω(t)
def
=

n∑
i=1

([|u(i) + tw(i)| − γ]+)2],

d(i) = sign(u(i) + t∗w(i))[|u(i) + t∗w(i)| − γ]+, i = 1, . . . , n.

This result gives conditions under which the operations in (ADM)
can be performed efficiently (in a closed form).

Let uk = Sxk. We further show that
1) validity result: if γ ≤

√
‖u0‖22 − (uTx0)2/(‖x0‖1+

√
n), then

the condition of Theorem 2 will hold for all ADM iterates,
2) joint sparsity result: any of the conditions (i)
‖AT ai‖2 ≤ γ, x

(i)
k = 0, (ii) |x(i)

k | ≤ (γ −
|u(i)
k |)/

√
γ2(n− 4) + 2γ‖uk‖1 + ‖uk‖22, implies y(i)

k = 0.
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Sparsity models have revolutionized signal processing in
several ways, including exciting results in the field of
compressed sensing (CS). This notion of exploiting low-
dimensional structure in high-dimensional signals have been
successful for manifold-modeled signals as well [1]. One thus
wonders if these ideas can further be extended to characterizing
systems rather than just acquiring signals?

Suppose we have a dynamical system whose internal (often
high-dimensional) system statex(t) ∈ R

N is only indirectly
observed via a one-dimensional time series of measurements
produced through an observation functions(t) = h(x(t)),
whereh : R

N → R. Surprisingly, when the dynamical system
has low-dimensional structure because the state is confined to
an attractorM of dimensiond in the state space, Takens’
Embedding Theorem [2] shows that information about the
hidden state of this system can be preserved in the time series
output datas(t). Specifically, Takens defined thedelay coor-
dinate mapF : R

N → R
M as a mapping of the state vector

x(t) to a point in thereconstruction space(RM ) by taking
M uniformly spaced samples of the past time series (with
sampling intervalTs) and concatenating them into a single
vector,F (x(t)) = [s(t) s(t − Ts) · · · s(t − (M − 1)Ts)]

T .
Takens’ main result states that (under a few conditions onTs)
for almost every smooth observation functionh(·), F is an
embedding1 of M when M > 2d. However, this guarantees
that only thetopology of the attractor is preserved, but not
its geometry. Thus in the presence of noise, the robustness
of any processing performed in the reconstruction space (e.g.,
dimensionality estimation) cannot be guaranteed.

Recent work in CS has highlighted the importance of well-
conditioned measurement operatorseF ∈ R

M×N to ensure the
geometry of a low-dimensional signal familyM is preserved.
In effect, if eF satisfies theRestricted Isometry Property(RIP)
of order d, which basically ensures thestable embedding2 of
d-sparse vectors into a lower dimensional space, then robust
recovery of these sparse vectors from their measurements can
be guaranteed. Here we present work done in [3], where we
extend this notion by establishing sufficient conditions whereby
the delay coordinate mapF is a stable embedding of the
state space attractor for linear systems with linear observations

1An embeddingis a one-to-one immersion.
2We say thateF is a stable embedding ofM of conditioningǫ if

for all x, y ∈M , (1− ǫ) ≤
‖ eF (x−y)‖2

2

‖x−y‖2
2

≤ (1 + ǫ).

functions3. The results we obtain contrast with the standard
CS results in three principle ways. First, the conditioning ofF

cannot always be improved by taking more measurements, as
some system/observation pairs will have a fundamental limit in
how well the system geometry can be preserved. Second, the
necessary number of measurements scales with the dimension
of the attractord but is independent of the dimension of the
ambient spaceN . Third, the total number of measurements
may in fact have to be larger than the system dimension
(M > N ) in order to make a particular conditioning guarantee.

To avoid these high-dimensional measurements, previous
work has proposed filtering (typically lowpass) the time series
data to obtain measurement vectors of a smaller size [2]. To be
precise, ifF is a delay coordinate map withM delays, then
the filtering operation is represented by a matrixB ∈ R

m×M

such that the resulting measurement vectors of the system
statex(t) can be written asB · F (x(t)) and we call the map
H = B · F : R

N → R
m the filtered delay coordinate map.

We show that ifB satisfies the RIP of orderO(d), whered is
the dimension of the system attractor4 M, thenB is a stable
embedding ofF (M). This comes from recent results in [4],
which shows that if a matrixB satisfies the RIP of orderO(d),
then by randomizing the signs of the columns ofB, it also
ensures a stable embedding of a manifold of dimensiond. Thus
even if we requireM to be large to ensure a stable embedding
of M with a certain conditioning, further filtering the time
series data with a well-chosenB ensures thatH is also a stable
embedding ofM with approximately the same conditioning
but possibly with significantly fewer measurementsm.
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3A general stable embedding result for nonlinear dynamical systems
is obviously of great interest. Our study on linear systems hopes to
elucidate some of the unique issues that arise when trying to stabilize
the embeddings of dynamical systems, helping to pave the way for
extensions to nonlinear systems.

4Here, we have to assume that the system attractors is a low-
dimensional manifold.
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Abstract—We consider the problem of estimating multiple
filters from convolutive mixtures of several unknown sources.
We propose to exploit both the time-frequency (TF) sparsity
of the sources and the sparsity of the mixing filters. Our
framework consists of: a) a clustering step to group the TF
points where only one source is active, for each source; b)
a convex optimisation step, to estimate the filters using TF
cross-relations that capture linear constraints satisfied by the
unknown filters. Experiments demonstrate that the approach
is well suited for the estimation of sufficiently sparse filters.

I. INTRODUCTION AND NOTATIONS

Given two convolutive mixtures xi =
∑N

j=1 aij ? sj ,
i = 1, 2, we wish to estimate the mixing filters aij from
the mixtures without the knowledge of the sources sj .

II. CROSS-RELATIONS FOR BLIND FILTER ESTIMATION

In the single source setting and in the absence of
noise, the so-called time-domain cross-relation holds. A
traditional method to solve for the filters using it is to
minimise ‖x2 ? a1 − x1 ? a2‖2 with a normalisation
constraint on the filters [1] (as there is only one source,
the source index is dropped on the filters). Denoting
B := B[x1, x2] a matrix built by concatenating Toeplitz
matrices derived from the observed mixtures, this leads to
the minimisation of ‖B·a‖2 subject to ‖a‖2 = 1 where a
is a concatenation of the vectorized unknown filters. The
normalisation ‖a‖2 = 1 is to avoid the trivial zero-vector
solution. It can be replaced by ‖a‖1 = 1 to seek sparse
filters [2]. However, these approaches are non-convex and
suffer from a shift ambiguity of the solution. Instead, we
propose the following convex optimisation problem

min
a
‖a‖1 s.t. ‖B · a‖2 ≤ ε and a1(t0) = 1 (1)

where t0 is an arbitrarily chosen time index. We show that
the new problem no longer suffers from a shift ambiguity.

This work was supported in part by the French Agence
Nationale de la Recherche (ANR), project ECHANGE (ANR-08-
EMER-006) and by the EU FET-Open project FP7-ICT-225913-
SMALL.

III. MULTIPLE SPARSE FILTER ESTIMATION

In the presence of multiple sources, the time-domain
cross-relation does not hold anymore. We extend the
cross-relation approach to multiple sources, assuming
that: the sources are sparse in the TF domain; we know
large enough TF regions where each source is the only
one contributing to the mixtures.

Cross-relations in the TF domain. We propose two TF
formulations (narrowband and wideband [3]) of the cross-
relation. They result in an optimisation problem similar
to (1) with a new matrix Bnb or Bwb, built from TF
representations of the mixture. Each row of these matrices
corresponds to a point in the TF plane.

Filter estimation from partial TF information. Assum-
ing that the sources are mutually disjoint in the TF plane,
we propose to build for each source a matrix extracted
from Bnb (resp. Bwb) by keeping only the rows indexed
by the set Ωj of TF points where the j-th source is the
only active one. We then solve the resulting optimisation
problem to estimate the filters.

IV. EXPERIMENTS

The proposed framework combines a TF clustering
step, to detect the regions Ωj , with a convex optimi-
sation step, to estimate the sparse filters associated to
each source. An experimental evaluation of the proposed
approach with real audio data shows that our approach
outperforms standard ICA approaches for filter estimation
when the filters are sufficiently sparse.
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Abstract—A well-known issue in blind convolutive source separation
is that the sources and filters are at best identifiable up to anarbitrary
scaling and permutation at each frequency bin. We propose toexploit
the sparsity of the filters as a consistency measure for correcting such
permutations. We show that the permutation is well-posed, up to a global
permutation, under appropriate sparsity hypotheses on thefilters. A
greedy combinatorial algorithm is proposed for permutation recovery. Its
empirical performance shows that the time-domain sparsityof the filters
allows to recover permutations much beyond theoretical predictions.

I. CONTEXT

Let xi[t] beM mixtures ofN source signalssj [t], resulting from
the convolution with a filteraij [t] of lengthL such that:

xi[t] =

N
∑

j=1

(aij ⋆ sj)[t], 1 ≤ i ≤ M. (1)

We consider the problem of estimating the matrix of filtersA =
(ai,j) from the mixtures, without knowledge about the sources.
A standard approach is to formulate the problem in the Fourier
domain: one needs to estimateaij [ω]. This suffers from a well known
ambiguity : without further assumption on eitheraij [t] or sj [t], one
can at best hope to find an estimationÃ = (ãi,j) where for every
frequencyω ≤ L we have

ãi,j [ω] = λj [ω]aiσω(j)[ω], (2)

with λj a scaling ambiguity andσω a permutation ambiguity. Several
methods [1] to exploit properties of eitherS or A solve these. Our
focus here is on the use of the sparsity ofA in the time domain
to find σ1 . . . σL ∈ SN , assuming the scalingλ ∈ C

L is solved.
Of course we can at best hope to obtain uniqueness up to a global
permutation of the columns ofA. We exploit [2, Th.6.2a] theℓp

quasi-norm‖A‖p
p :=

∑

ijt
|aij [t]|

p, 0 ≤ p ≤ 1, as a consistency
measure to solve the permutations.

II. T HEORETICAL GUARANTEES

If the filters aij have disjoint supports, without further sparsity
hypothesis, we show that permutations can only increase thelp norm.

Theorem 1 ([3]): Let Γij ⊂ {1, . . . , L} be the time domain
support of aij . Suppose that for alli and j1 6= j2 we have
Γi,j1 ∩ Γi,j2 = ∅. Then for0 ≤ p ≤ 1 we have‖A‖p

p ≤ ‖Ã‖p
p.

To obtain uniqueness guarantees, we now introduce assumptions on
the sparsityk := maxi,j ‖ai,j‖0. We measure the permutation error
for 0 ≤ p ≤ 1 with

∆p := min
π∈SN

max
i,j

‖
{

aiπ(j)[ω]− ãij [ω]
}

1≤ω≤L
‖p. (3)

For sparse filters, the true filters are the sparsest among allfilters
incurring sufficiently few permutations. The skilled reader will rightly
sense the role of theℓ0 Fourier-Dirac uncertainty principle [4] in the
following result.

This work was supported by the EU FET-Open project FP7-ICT-225913-SMALL

Theorem 2 ([3]): (i) If 1 ≤ ∆0 ≤ L/2k, then‖A‖0 ≤ ‖Ã‖0.
(ii) If ‖A‖0 ≥ ‖Ã‖0, then∆0 ≥ L

2k
.

For primeL, the results hold withL + 1− 2k instead of L

2k
.

The equality case implies that the filters are pathologically related to
Dirac combs of stepL

2k
.

III. A COMBINATORIAL ALGORITHM

We perform minimisation iteratively by considering one frequency
bin 1 ≤ ω ≤ L

2
at a time and choosing a permutation (in a combi-

natorial fashion) that minimises theℓp norm locally, while keeping
the other bins fixed. To preserveaij = āij , the same permutation
is applied on the corresponding mirror frequencyL + 1 − ω. This
iterative procedure is repeated over all frequency bins till theℓp norms
of the filters converges.

We conservatively consider the filters as successfully recovered
when the SNR of the permutation corrected time-domain filters
exceeds 200dB. Fig. 1 shows the phase transition diagram forfilter
recovery using the proposed algorithm for the number of sources
N = 4, number of channelsM = 3, length of individual filters
L = 1024 and p = 1. White indicates guaranteed success, black is
guaranteed failure.
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Fig. 1. Phase transition diagram for filter recovery byℓ
1 minimisation.

The guarantees of Theorem 2 are delimited by the black line
in general, and the white line ifL is prime. We observe a phase
transition close to the prime length case.
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I. INTRODUCTION
Let us consider the following problem basic for optical wave �eld

reconstruction. A wave �eld u0 at the object plane is modeled as
complex-valued one characterized by phase and amplitude transmit-
tance. The wave �eld propagation (blur operator) from the object
to the parallel sensor plane is de�ned by the Rayleigh-Sommerfeld
diffraction integral. The problem is to reconstruct the object plane
distribution for both phase and amplitude from noisy complex-valued
observations given at the sensor plane. The methods conventional
in optics give rather blurred reconstructions and exhibit pronounced
"waves", wiggles" and "ringings". The optical diffraction de�ning the
fundamental limitations on the spatial resolution of reconstructions
is one of the main sources of these artefacts. In this paper we
propose and develop a variational inverse imaging technique with
the main motivation to wipe out the mentioned artefacts and obtain
crisp imaging.

II. MAIN RESULTS
Being in line with the general formalism of the compressive

sensing (CS), in particular for optical setup [1], [2], we propose an
approach and algorithm which are different from the main stream
in this �eld in three basic aspects. First, to deal with the complex-
valued wave �elds comprehensively we use modeling and regular-
ization which are separate for phase and amplitude. The following
equations link amplitude and phase of the object wave �eld with the
corresponding transform (spectral) representations:

mod(u0) = 	A � �A, angle(u0) = 	' � �', (1)
�A = �A �mod(u0), �' = �' � angle(u0), (2)

where �A and �' are amplitude and phase spectra, respectively. The
synthesis and analysis matrices	A, �A,	', �' are shown with the
indices A and ' for amplitude and phase. The operations mod(u0)
and angle(u0) applied to a vector give the vectors of amplitude and
phase values. The equations (1) de�ne what is called the synthesis
giving the signal, amplitude (mod(u0)) and phase (angle(u0)), from
the spectra �A and �'. Contrary to it the analysis equations (2)
give the spectra for the amplitude and for the phase of the object
distribution.
Second, for modeling of phase and amplitude which can be

spatially varying and continuous or discontinuous we use special
bases functions, known as the BM3D-frames [3]. These frames
provide rich overcomplete (large size) sets of functions which are
data adaptive and nonlocal. BM3D �ltering and BM3D-frames are
recognized as a very ef�cient fool for various imaging problems [4],
[5].
Third, while the conventional CS techniques use a single objective

function to be optimized the algorithm developed in this paper

is based on a vector constrained optimization with two objective
function minimized alternatively. It searches for a �xed�point giving
a balance between two quality measures de�ned by the objective
functions. This vector minimization decouples the inverse and �l-
tering operations and results in the iterative algorithm simple in
implementation and very ef�cient [4]. Convergence in-small to the
�xed point is proved for this algorithm.

III. EXPERIMENTS
In Fig. 1 we show an example of the phase reconstruction obtained

by the conventional technique (left column) and by the proposed
algorithm (right column). The second row shows the cross-sections
of the images shown in the �rst row. A nearly ideal chessboard
phase modulation in the object plane is reconstructed by the proposed
algorithm while the conventional technique gives the reconstruction
severely damaged by multiple artifacts.
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Fig. 1. Phase reconstruction for object with phase modulation. Left column
obtained by the regularized inverse algorithm and the right column is obtained
by the proposed algorithm with sparse amplitude and phase �ltering.
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I. INTRODUCTION

Recently, it has been proposed to use sparse representation based
classification (SRC) [1] for automatic speech recognition (ASR) [2].
In ASR with SRC, speech features are represented as a sparse
linear combination of speech exemplars: speech features extracted
from a training database token. With the exemplar dictionary atoms
associated with classes, classification is done by using the weights
of the activated dictionary atoms as evidence for the class of the
observed speech token. In ASR however, the employed databases
contain millions tokens, which makes it infeasible to use all available
training tokens for the exemplar dictionary. Therefore, the employed
dictionary is a subset of a few thousand atoms.

In this work, an iterative algorithm is proposed that can efficiently
use an hierarchically structured dictionary containing hundreds of
thousands of atoms. The algorithm works by, on each iteration,
replacing dictionary atoms that have an increasing weight by their
child-nodes. The overall size of the dictionary is kept down by
merging atoms that have a decreasing weight.

II. METHOD

In previous work [2], a variant of Lee and Seungs iterative NMF
algorithm [3] was used to obtain sparse representations:

xi+1 ← xi. ∗ (AT(y./(Axi)))./(A
T1 + λ). (1)

with .∗ and ./ denoting element-wise multiplication and division,
respectively. The observed speech feature vector y is of length E and
the dictionary A has dimensions E ×N . The sparse representation
xi has length N and is indexed by iteration counter i ∈ [1, I]. The
vector 1 is an all-one vector of length E. Applying update rule (1)
minimises the generalised Kullback-Leibler (KL) divergence between
y and Ax, with an L1 norm controlling the sparsity through the
constant λ.

The dictionary A is a small subset of the complete dictionary
Â, the collection of N̂ exemplar tokens that comprises all available
training material. In this work, first a hierarchical ordering of Â is
found, so that each exemplar is either a leaf node, or is a parent of two
exemplars. This hierarchy is obtained through a variant of hierarchical
agglomerative clustering (HAC), which iteratively merges the two
closest exemplars until all exemplars are merged. The difference
with conventional HAC is that after merging, the parent node is
represented by one of the child nodes, rather than by the mean of the
two exemplars. This approach, reminiscent of K-medoid clustering,
ensures an efficient clustering strategy (as distances only need to be
computed once) and ensures that at any point in the hierarchy, the
cluster nodes are still exemplars with associated state labels.

For the first iteration of our proposed method, an initial dictionary
A0 is determined by taking the top N0 � N̂ exemplars as
determined by the hierarchy. Then, (1) is applied with this initial
dictionary A0 and initial sparse representation x0 to obtain the sparse
representation x1. The change in exemplar activation is determined
as ∆x = x1−x0. If for a certain exemplar its ∆x > 0, and it is not
a leaf node, its child exemplar is added from the dictionary Â to the

TABLE I
RECOGNITION ACCURACIES FOR VARIOUS DICTIONARY SIZES

Dictionary size N
proposed 2000 4000 8000 16000 32000

95.9 77.9 83.7 89.9 92.3 95.5

dictionary A0 (recall that its other child is the exemplar itself). Both
the exemplar and the added exemplar get weight 0.5 ∗ x1 > 0. After
processing all activated exemplars in this fashion, the dictionary A1

is obtained. This procedure is repeated on every subsequent iteration.
If the number of exemplars in the dictionary A exceeds some

threshold Ni > M , exemplars with ∆x < 0 are sought. For these
exemplars, it is checked whether the other child exemplar of its parent
is also in the dictionary A, and whether that child also has ∆x <
0. If so, the two children are merged: effectively, one exemplar is
removed as parent nodes are represented by one of the child nodes.
The weights of the two exemplars are summed.

Both the merging and the splitting procedure are symmetric: for
example if at a later iteration a previously merged exemplar obtains
∆x > 0, it will be splitted again to restore the previous situation.
Note that the only computational overhead introduced by this pro-
cedure is the book-keeping of merging and splitting exemplars, and
this is made efficient by using lookup tables which list the parent
and child nodes of each exemplar at each point in the hierarchy.

III. RESULTS

Using the experimental setup described in [2], the method is
evaluated on the digit recognition task TIDIGITS. The parameters
used were E = 690, N0 = 2000, M = 4000, I = 600,
N̂ = 408 066. HAC was done using a euclidean distance measure
on log-compressed features.

The proposed method was compared to recognition with several
fixed dictionary sizes N ∈ {2000, 4000, 8000, 16000, 32000}. The
results in Table I show that with these settings, the proposed method
is able to perform at least as good as fixed dictionaries containing
32000 exemplars. Timing experiments (not shown) confirmed that the
algorithm does not perform substantially slower than using a fixed
dictionary of size 2000− 4000.
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Sparse Object-Based Audio Coding Using Non-Negative
Matrix Factorization of Spikegrams

I. I NTRODUCTION

A sparse audio representation applied to audio source coding is
previously proposed in [1]. In that approach the audio signal is
projected onto a set of gammatone/gammachirp kernels that generates
sparse representations dubbed as spikegrams. Addressing each spike
individually in the previously proposed approach is very costly in
terms of bits when audio coding applications are considered. To
reduce the overall bitrate, a technique based on frequency episode
discovery is proposed in [1]. Other techniques based on graph theory
have also been proposed in [6]. In this paper, we outline a novel
approach based on NMF-2D with sparsity [2] to extract the compo-
nent and projection matrices. These two matrices are then quantized,
arithmetically coded, and sent to the receiver. The receiver multiplies
the two matrices and generates a resynthesized spikegram that can
be used to generate the original audio signal. Our work has some
similarities with the approach proposed by Nikunen and Virtanen
[3]. However, Nikunen and Virtanen used spectrograms and only
applied the NMF technique to code the amplitude of the signaland
not to the non-positive phase information. Since phase information
is not coded by NMF, the overall bitrate cannot be reduced below
a certain point in [3]. On the other hand, our proposed spikegram
contains both phase and amplitude information, and there isno need
to send phase as side information as proposed in [3]. Furthermore,
Nikunen and Virtanen used the standard NMF as proposed by Lee
and Seung [4], which we found less optimal for coding purposes
than the NMF-2D. The fact that repetitive patterns in an audio signal
span in the 2-D frequency plane, warrants the use of NMF-2D which
would optimally resolve audio objects on both axes. Moreover, since
our spikegrams are sparse it is much easier to impose a sparseness
constraint on the NMF than in the case of a spectrogram where the
information is spread in a relatively more uniform way in both time
and frequency. Finally, it can be shown [5] that the mean-squared
error between the original audio signal and the reconstructed audio
signal is inversely proportional to the redundancy (overcompleteness)
of the representation for a given error in the representation domain.
Therefore, the mean-squared error in the temporal domain islower
for our spikegram (overcomplete representation) comparedto the
spectrogram (orthogonal representation) used by other researchers for
a given error in the representation domain. Results on different audio
signals show that our approach is able to code audio signals at 30+
dB with a bitrate around 85 kbps. Informal listening tests also show
that the quality of the resynthesized audio signals is near transparent.
Preliminary results show that these bitrates can be furtherreduced
by noise shaping, bandwidth extension, etc. These results are a first
step toward an object-based universal audio coder.

II. D ESCRIPTION OF THE APPROACH

Figure 1 shows the block diagram of the proposed approach.
A perception-based sparse representation called “spikegram” is
first generated by projecting the audio signal onto gamma-
tone/gammachirp kernels. Since some of the coefficients arenegative,
we apply an invertible transform to the representation to create a

non-negative representation and keep only rows that have non-zero
elements. We then apply the NMF-2D, where the decompositionis
done as following:

V ≈ Λ =

X
τ

X
φ

↓φ

W
τ
→τ

H
φ (1)

where↓ φ denotes the downward shift operator which moves each
element in the matrixφ rows down, and→ τ denotes the right shift
operator which moves each element in the matrixτ columns to the
right. W contains the basis vectors,H is the projection matrix,V
is the transformed spikegram (audio signal representation), andΛ is
the approximate reconstruction of the transformed spikegram.

In order to guarantee a certain audio quality, we propose an
approach to adaptively modify the NMF-2D parameters such as
sparseness, length of temporal and frequency shifts. The cost function
of the NMF-2D is also perceptually shaped, since the standard mean-
squared error cost of the NMF-2D penalizes high frequencies. As
shown in the figure, the elements of H are vector quantized while
the elements of W are scalar quantized (since W is a much smaller
matrix compared to H, the bit cost of using scalar quantization is
negligible). Matrices H and W are then transmitted to the receiver
and reconstructed to obtain the original audio signal. Results with
different audio signals show that a bitrate of 85 kbps at 30+ dB can
be achieved. Informal listening tests also confirm good quality of
reconstruction.

Fig. 1. Block diagram of the proposed audio coder based on NMF-2D

III. F UTURE WORK

A better noise shaping model introduced in the cost function(see
[1]) as well as a method based on spectral bandwidth extension can
further reduce the bitrate for the same audio quality.
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Abstract—We empirically show how applying a pure greedy algorithm
cyclically can recover compressively sampled sparse signals as well as
other more computationally complex approaches, such as orthogonal
greedy algorithms, iterative thresholding, and `1-minimization.

I. INTRODUCTION

Under certain conditions, we can recover a vector x ∈ RN from
measurements u = Φx created by a matrix with unit-norm columns
Φ ∈ Rm×N (N > m). Here we focus on a cyclic application of the
pure greedy algorithm matching pursuit (MP) [1]. Given the index
set Ωk ⊂ Ω = {1, 2, . . . , N} (indexing the columns of Φ), MP
augments this set by Ωk+1 = Ωk ∪ {nk} using

nk = arg min
n∈Ω
||rk − 〈rk,ϕn〉ϕn||

2
2 = arg max

n∈Ω
|〈rk,ϕn〉| (1)

where ϕn is the nth column of Φ, rk = u −Φxk is the residual,
and the nk row of xk+1 is defined

[xk+1]nk = [xk]nk + 〈rk,ϕnk
〉. (2)

For initialization, Ω0 = ∅ and x0 = 0. Pure greedy algorithms like
MP are successful only for the most trivial of cases, e.g., when Φ
contains an orthogonal basis and x activates only functions in that
basis that are orthogonal to the rest of Φ [2], [3].

Cyclic MP (CMP) [4], [5] runs as MP at each iteration, but
includes a model refinement. Define the ith value of Ωk ⊂ Ω =
{1, 2, . . . , N}, Ωk(i). First for i = 1, CMP finds a replacement
atom

ni = arg min
n∈Ω
||rk\i−〈rk\i,ϕn〉ϕn||

2
2 = arg max

n∈Ω
|〈rk\i,ϕn〉| (3)

where rk\i = u −
[
Φxk −ϕΩk(i)[xk]Ωk(i)

]
. Then CMP updates

Ωk such that Ωk(i) = ni, and the solution [xk]ni = 〈rk\i,ϕn〉.
Then CMP does the same for i = 2, up to k. After cycling through
all atoms until some stopping criterion is met, CMP augments Ωk as
in MP, and refines the model again.

Figure 1 shows the probability of exact recovery (||x −
x̂||2/||x||2 < 0.01) for vectors of varying sparsity k with elements
drawn from two distributions, for six undersampling ratios m/N with
no noise, using both CMP and Orthogonal MP (OMP). For these ex-
periments, we make N = 400, sample Φ from the uniform spherical
ensemble, and average the results over 100 independent trials for each
sparsity and number of measurements. In our implementation, we
make CMP run the refinement procedure a max of five times, or until
||r′k||22/||rk||22 > 0.999, where r′k is the residual after refinement. It is
clear that CMP can perform just as well as OMP at this task without
matrix inversions. Our final work will include comparisons with other
methods, such as iterative thresholding [6], `1 minimization [7], and
two-stage thresholding [8], as well as an analysis of the algorithm.
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Fig. 1. Probability of exact recovery using CMP (solid) and OMP (dashed)
at several undersampling values m/N (labeled). Top: Active elements dis-
tributed Constant Amplitude Random Signs [8]. Bottom: Active elements
distributed Normal.
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Abstract—We address the problem of structured sparse representation
within a Bayesian framework. In particular, we consider a mean-field
approximation for the estimation of the dependencies between atoms
using a Boltzmann machine. This algorithm is shown to outperform the
reference algorithm [1] with regard to their success criterion.

Index Terms—Structured sparse representations, Boltzmann machine,
mean-field approximation.

I. INTRODUCTION

Recent contributions have emphasized the interest of considering
structures between atoms selected in sparse representations (SR), for
a wide range of dictionaries and classes of signals. This problem can
be set into a Bayesian framework, e.g. Cevher et al. [2] and Faktor
et al. [1]. Both use Boltzmann machines to model the dependencies
between atoms, but differ in the prior model on the SR coefficients.
In this paper, we consider a similar model as in [1].

Our observation model is y =
∑M
i=1 si xi di + n, where s ∈

{0, 1}M is the SR support, n∼N (0, σ2
nIN ) and IN the identity

matrix. We suppose that ∀i, p(xi)=N (0, σ2
xi

) and s is distributed
according to a Boltzmann machine of parameters b and W1:

p(s) ∝ exp(2bT s + 2sTWs− 21TMWs), (1)

where 1M = [1, . . . , 1] of length M .

II. STRUCTURED SOFT BAYESIAN PURSUIT ALGORITHM

Based on this model, we consider here the following marginalized
maximum a posteriori (MAP) estimation problem:

ŝ = arg max
s∈{0,1}M

log p(s|y), (2)

where p(s|y) =
∫
x
p(x, s|y)dx. To tackle problem (2), a greedy

algorithm could be used [1] to approach the solution with a succession
of local decisions. In this paper, we alternatively propose a mean-field
(MF) approximation of p(x, s|y) which approximates p(x, s|y) with
a probability distribution, say q(x, s), constrained to have a “suitable”
factorization while minimizing the Kullback-Leibler distance with
p(x, s|y). Here, q(x, s) is constrained to the structure:

q(x, s) =
∏
i

q(xi, si) =
∏
i

q(xi|si) q(si). (3)

Then the minimization of the Kullback-Leibler distance subject to (3)
can be performed by the “variational Bayes EM algorithm” (VB-EM)
[3], which evaluates the q(xi, si)’s by computing at each iteration2:

q(xi|si) = N (m(si),Γ(si)),

q(si)∝
√

Γ(si) exp
(

1
2
m(si)2

Γ(si)

)
exp
(
2si(bi+

∑
j 6=i wij(q(sj=1)−1))

)
where Γ(si) =

σ2
xi
σ2

n

σ2
n+σ2

xi
si
, m(si) = si

σ2
xi

σ2
n+σ2

xi
si
〈ri〉Tdi,

〈ri〉 = y −
∑
j 6=i q(sj = 1) m(sj = 1) dj .

1This distribution is equal to the one used in [1], [2] with s∈{−1, 1}M .
2For a sake of clarity, we drop here the iteration indices.

Compared to [1], the proposed algorithm does not make any hard
decision on the SR support at each iteration but rather updates
posterior probabilities. In that way, it can be seen as a soft process.
Both algorithms have similar complexities, of order M2 per iteration.

Coming back to (2), p(s|y) is simplified as p(s|y) '∫
x

∏
i q(xi, si)dx =

∏
i q(si). We finally obtain ∀i ŝi =

arg maxsi∈{0,1} log q(si), which is solved by simple thresholding.

III. EXPERIMENTAL RESULTS

To assess the performance of the proposed algorithm, we follow
the same methodology as in [1]. We generate a large number K of
observations according to the model and estimate the ability of the
algorithm to reconstruct the SR support via the probability

1− 1

K

K∑
k=1

‖s(k) ∩ ŝ(k)‖0
max(‖s(k)‖0, ‖ŝ(k)‖0)

. (4)
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The data is generated
with N = 64, M =
256, and a DCT dictio-
nary. The Boltzmann pa-
rameters are drawn inde-
pendently: the elements
of b from N (−2.5, 1)
and the elements of W
from U [−0.1, 0.1]. The
standard deviations σxi

are i.i.d. realizations of
U [15, 60]. For each point
of simulation, we run 500
trials. We adjust the final threshold at 0.25. The figure above com-
pares 2 algorithms: “MAP-greedy”, proposed in [1] and “SSoBaP”
(for Structured Soft Bayesian Pursuit algorithm), proposed here. For
the performance criterion considered, we can see that “SSoBaP”
outperforms “MAP-greedy” over a wide range of noise variances.

IV. CONCLUSION

In this paper, we have shown that a MF approximation together
with a VB-EM algorithm is a promising and competitive approach
for the estimation of structures between atoms. To the extent of the
considered criterion, the resulting algorithm is shown to outperform
the baseline algorithm [1]. Complementary results, involving other
performance criteria and other state-of-the-art algorithms, will be
added in the final paper to confirm the relevance of this approach.
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I. INTRODUCTION

We consider a reconstruction of y from observations z = Ay+�",
where z;y 2 RN are vectors representing correspondingly observed
and true images, A is a N�N blur matrix, "~N (0N�1; IN�N ) is a
vector of i.i.d. standard Gaussian components, and � is the standard
deviation of the noise.
Contribution of this paper concerns two aspects of inverse image

reconstruction. First, we use the BM3D-frames presented in [1] for
sparse image modeling. Second, we formalize image reconstruction
as a vector variational problem with two objective functions. This
technique results in decoupling of inverse and �ltering. Comparison
versus the standard variational settings with a single objective func-
tion demonstrates a clear advantage of the decoupling. Overall, the
achieved results numerically and visually are very good and mainly
overcome the best competitive results in the �eld.

II. BM3D IMAGE MODELING

In detail discussion of BM3D modeling can be found in [2]. It is
a nonlocal adaptive technique based on high-order groupwise models
de�ned in 3D transform domain. It has been shown in [1] that
provided a �xed grouping the BM3D analysis/synthesis can be given
in the matrix form linking the image y and its groupwise spectrum
vector ! 2 RM by the forward and backward transforms

! = � � y; y = 	 � !: (1)

Proposition I. The matrices �T� and 		T are diagonal with
positive items; 	� = IN�N .
The last formula enables perfect reconstruction of the image y

from the groupwise spectrum !. It follows from the proposition that
� and 	T are full column rank matrices. The rows of the full rank
(M �N) matrix � constitute a frame in RN , and the columns of
the full rank (N �M) matrix 	 constitute a frame dual to �. These
frames are not tight,�T �� 6= IN�N and	T �	 6= IN�N . In general
	 6= (�T�)

�1
�T , and 	 is an alternative dual frame.

III. VARIATIONAL IMAGE DEBLURRING

For the above observation model with Gaussian i.i.d. noise we
consider the following variational setting

(!̂; ŷ) = argmin
!;y

f 1
2�
kz�Ayk22+� �k!kp j ! = �y, y = 	!g,

(2)
where both the analysis and synthesis links between the image and
spectrum are considered as constraints. For p = 1 and p = 0 (2) is
de�ning respectively l2-l1 and l2-l0 optimization problems.
Let us replace the constrained minimization in (2) by an uncon-

strained one where the constraints are replaced by the quadratic
penalties with positive weights s. In this way we arrive to the

following objective function

L (y;!) = 1

2�
kz�Ayk22 + � � k!kp + (3)

1

21
k! ��yk22 +

1

22
ky �	!k22 .

This L(y;!) is universal in the sense, that with 1 ! 1 it corre-
sponds to the synthesis approach and with 2 !1 it corresponds to
the analysis approach to image reconstruction. In general, with �nite
1, 2 it de�nes a combined synthesis/analysis approach.

IV. MAIN RESULTS
Let us decompose (3) into the sum of two objective functions,

L = L1 + L2, where

L1 (y;!) , 1

2�
kz�Ayk22 +

1

22
ky �	!k22 ; (4)

L2 (y;!) , � � k!kp +
1

21
k! ��yk22 :

We de�ne a novel image deblurring algorithm using the following
alternative minimization of L1 and L2:�

yt+1 = argminy L1 (y;!t) ,
!t+1 = argmin! L2 (yt+1;!) ; t = 0; 1; :::.

(5)

In this algorithm instead of conventional for the variational ap-
proaches minimization of a single objective function L we use an
alternative minimization of two objective functions partial summands
of L. It is easy to notice that minimization of L1 on y serves to
inverse the blur operator, while minimization of L2 on ! serves
as a denoising operation. Thus, the proposed decomposition of L
corresponds to decoupling of deblurring and denoising.
The proposed algorithm is looking for a �xed-point (!�;y�)

de�ned as a solution of two equations:�
y� = argminy L1 (y;!�) ,
!� = argmin! L2 (y�;!) .

: (6)

The following convergence result is proved for the algorithm (5).
Proposition 2. For any �xed �, 1, 2, � , the sequence (yt;!t)

generated by (5) convergences to a �xed point (y�;!�) of the
equations (6) if it exists.
Extensive simulation experiments show a serious advantage of the

developed algorithm over the best techniques in the �eld.
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Fig. 1. (a). Standard schematic of lensless far-field GI with thermal light;
(b). the physical explanation of far-field GI, the thermal source S shown in
the scheme (a) acts as a phase conjugated mirror and a spatial low-pass filter
because of its finite transverse size.

Abstract—For ghost imaging [1], [2], [3], [4], [5], the speckle’s
transverse size on the object plane is the system’s diffraction
limit and enhancing the resolution beyond this diffraction limit
is generally called super-resolution [4], [5], [6]. When signals
satisfied a certain sparsity conditions, Donoho has demonstrated
mathematically that super-resolution restoration was possible [7].
By combining the sparse prior property of images with ghost
imaging method, we demonstrated experimentally that super-
resolution imaging can be nonlocally achieved in the far field
applying a new sparse reconstruction method called gradient
projection for sparse reconstruction (GPSR) algorithm [5], [6],
[8], [9].

Fig. 1(a) presents the experimental schematic for lensless
far-field ghost imaging, which is designed as the method men-
tioned in Ref. [5]. Fig. 1(b) describes the physical explanation
of far-field GI and its resolution, which is discussed in detail
in Ref. [6].

Fig. 2 presents experimental results of a double-slit re-
covered with ghost imaging (GI) and ghost imaging via
sparsity constraints (GISC) methods in different collecting
areas L1 × L1, using the schematic shown in Fig. 1(a).

In conclusion, we have achieved super-resolution far-field
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Fig. 2. Experimental reconstruction of a double-slit in different collecting
areas with z=1200mm, z1=500mm and D=0.6mm (the speckle’s transverse
size ∆xs=1280mm). (a). The cross-section curve of the speckle on the
object plane obtained by measuring the second-order correlation function
of light field on the reference detection plane (the curve’s full-width at
half-max (FWHM) is the diffraction limit of GI); (b). the object; (c). the
object’s diffraction patterns received by the test detector Dt; (d). GI method
(averaged 3000 measurements); (e) and (f) are GISC when the pixel-resolution
of the camera Dr is 13µm and 65µm, respectively (with 3000 and 500
measurements for (e)-(f), respectively). The collecting areas of the detector
Dt shown in (1-3) are 1.6mm×1.6mm, 3.2mm×3.2mm, and 6.4mm×6.4mm.

GI by combining GI method with the sparse prior property
of images. We also show that Fourier-transform diffraction
pattern of the object and its image in real-space can be
obtained at the same time. This brand new far-field super-
resolution imaging method will be very useful to microscopy
in biology, material, medical sciences, and in the filed of
remote sensing, etc.
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and Development Program of China under Grant Project No.
2006AA12Z115, and Shanghai Natural Science Foundation
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Terahertz pulsed imaging (TPI) modalities have numerous 

applications such as medical diagnosis, detection and chemical 

mapping of illicit drugs and explosives, and inspection of 

pharmaceutical tablet. However, as the majority of terahertz 

images were obtained in a pixel-by-pixel raster scan fashion, 

existing terahertz imaging systems have slow imaging speed. 

Recently, Chan et al. [1] first reported a new terahertz imaging 

system based on the concept of compressed sensing (CS) [2, 3] 

for high-speed image acquisition in which the number of 

measurements is much smaller than that of the total pixels in 

reconstructed images [2, 3]. In particular, experimental results 

in [1] suggested that only 300 measurements were used to 

obtain an image of 3232 pixels with reasonable quality. 

   Despite its great potential, compressive TPI is still at the 

infant stage and much needs to be done before its practical 

applications. In this talk, we will present our work on the 

development of fast compressive TPI cameras from the signal 

processing perspective. In particular, we will focus on the 

design and implementation of efficient sampling operators. 

We will also highlight main challenges for reconstruction of 

terahertz images, especially for time-domain terahertz pulsed 

systems. Extensive hardware measurement and reconstruction 

results will be presented. 

Fig. 1 shows the experimental arrangement for compressive 

TPI. The masks were used to modulate the terahertz 

waveforms. Recall that in [1], full random masks have been 

used. Although such a sampling operator is theoretically 

optimal, they require huge memory for storage and heavy 

computation complexity for reconstruction. Besides, due to the 

lack of spatial light modulator in terahertz imaging, the 

hardware implementation is complicated. In our work, we 

have investigated the construction of deterministic and 

structured random operators. Specifically, we have developed 

a 40400 deterministic binary sampling operator [4] and Fig. 

2 shows an example of experimental results for time-domain 

terahertz pulsed imaging. As can be seen, the Chinese 

character “big” can be reconstructed at different terahertz 

frequencies. To enable fast sampling, we have also proposed 

the use of a single rotating mask (a spin disk) for automatic 

and continuous implementation [5]. Such a design offers the 

advantages of compact design, easy computation and fast 

implementation with potentially video-rate sampling speed. As 

compared with conventional TPI, only 10%-20% of the pixels 

are required. Fig. 3 shows some experimental results where 

the 3232 terahertz images “A”, “U”, and “H” were 

reconstructed using only 160 measurements. Our experimental 

results suggested that CS based TPI may have great potential 

in real-time imaging applications. 

 

 
 
Figure. 1. Experimental arrangement for terahertz pulsed imaging using CS. 

The inset shows one of 40 designed masks with the dotted line indicating the 

4040 mm2 imaging area. The copper pixels are opaque to terahertz radiation 
while the white pixels are transparent to terahertz radiation. [4] 

 

 

 
 

 
 

 

 
 

Figure. 2. (a) Original 2020 image of a Chinese character “big”. (b) 

Reconstructed image at 0.3 terahertz. (c) Reconstructed image at 1.0 terahertz. 

The measurement operator is the 40400 deterministic sampling operator 

proposed in [4].  

 

 
 

 
Figure. 3. Reconstructed terahertz images shaped as the English characters (a) 

“A”, (b) “U”, and (c) “H” using 160 measurements from the spin disk 

implementation. 

ACKNOWLEDGEMENT 

The authors thank EPSRC laser loan pool for the laser system 

used in part of the work. NN would like to acknowledge funding 

from the EPSRC Vacation Bursary Scheme. 

REFERENCES 

[1] W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk,and D. 
M. Mittleman, Appl. Phys. Lett., 93 (2008), 121105 

[2] D. Donoho, IEEE Trans. Inf. Theory, 52, 1289, (2006). 

[3] E. Candes, J. Romberg, and T. Tao, IEEE Trans. Inf. Theory, 52, 489, 
(2006). 

[4] Y. C. Shen,  L. Gan, M. Stringer, A. Burnett, K. Tych, H. Shen, J. E. 

Cunningham, E. P. J. Parrott, J. A. Zeitler, L. F. Gladden, E. H. Linfield, 
and A. G. Davies, Appl. Phys. Lett., 95 (2009), 231112 

[5] H. Shen, N. Newman, L. Gan, S. C. Zhong, Y. Huang and Y. C. Shen, 
35th International Conference on IRMMW-THz, (2010). 

H. Shen
a
, L.Gan

b
, N. Newman

a
 and Y. C. Shen

a*
 

a
 Dept of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK  

b 
Electronic and Computer Engineering, Brunel University, Uxbridge UB8 3PH, UK 

Fast Compressive Terahertz Imaging 

(c) (b) (a) 

(a) (b) (c) 

92



Dictionary Learning: Application to ECG Denoising
Anastasia Zakharova, Olivier Laligant and Christophe Stolz

University of Burgundy, Le2i laboratory
Le Creusot, France

Email: anastasia.a.zakharova@gmail.com, olivier.laligant(christophe.stolz)@u-bourgogne.fr

Abstract—We propose a denoising method for ECG signals which
is based on dictionary learning. On the preprocessing step, we obtain
an overcomplete dictionary adapted to different types of ECG signals
(choosing the training set in such a way that all the clinically important
phenomena are included in it). We use then this dictionary for denoising.
This method preserves the form of QRS complex and time localization
of the signal that allows us to recognize an anomaly. We show that
the proposed algorithm outperforms the algorithm of ECG denoising by
sparse 2d-separable transform.

A. Dictionary Learning

A sparse representation is very useful in denoising because it
improves the efficiency of the algorithm. Since a signal is said to
be sparse in some dictionary D the choice of such a dictionary is
crucial. Since it is not evident which dictionary is the best for ECG
signals, we will learn a dictionary D which is particularly adapted
to this type of signals; i.e., they are maximally sparse in it.

In order to learn the dictionary, we will use the same strategy as
in [3]; that is, we solve a joint optimization problem

min
D∈C,α∈Rk

1

2
∥x−Dα∥2

2 + λ∥α∥1, (1)

(with α being the decomposition coefficients, λ the regularization
parameter) by alternating between the variables α and D; while one
of them is fixed, we minimize another one.

B. Simulation Results

As a training set to learn the dictionary, we used the database of
ECG records obtained by the Creusot - Montceau-les-Mines hospital
and we chose 14 signals taking a segment of 1000 samples from each
of them in such a way that they represent the variety of clinically
important phenomena.

We performed two kinds of simulation. First, we added to the signal
randomly generated Gaussian noise with different variances. Then we
applied the denoising algorithm and we studied the performance of
the method by calculating the SNR of the noisy and reconstructed
signal. The results are shown on Figure 2 where our method is
compared to sparse 2d separable method and one can see that it
performs better. Note that in [2] it was shown that sparse 2d separable
algorithm outperforms the methods of soft thresholding [1] and
extended Kalman smoother filtering [4].

The second simulation concerns the analysis of the ECG signal of
a concrete patient. We apply the denoising algorithm to the pattern
with visible noise and we compare the result with a similar pattern
of the same patient which was not damaged with noise. As one can
see on the Figure 2, the form of the denoised signal resembles a lot
the form of signal with no noise while sparse 2d separable method
fails to denoise this signal.
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Abstract—Recently, sparse coding has been employed in natural
image category classification problems and has produced state-of-the-art
performance [1][2]. In this work, we present an unsupervised method
for learning a view condition invariant representation for object images
without explicit knowledge on the view conditions involved (”blind
modeling”). The method requires only sufficient unlabeled image series,
and can be used as a simple post-processing step to improve the
performance of these state-of-the-art systems.

I. BACKGROUND

One of the core challenges of image category classification
problems is the massive amount of variations that may affect how
an object appears in an image. The said variations can be accounted
by the physical variations of objects within categories (e.g. category
of cars) coupled with large amounts of view conditions, which may
include view angle, view distance, and light conditions. This makes
it hard to relate limited amounts of labeled samples to a prohibitively
larger set of potential test images. Thus state-of-the-art methods
use different measures to reduce such variations. For example, they
use local descriptors like SIFT (Scale-Invariant Feature Transform)
[3] which extract features that are scale and rotation invariant from
the image. They also use a technique called pooling to generate a
translation-invariant representation for the image using the coded
local descriptors. [4] provides a framework of these state-of-the-art
systems for general sparse-coding research audience.

Despite these advances, simple transform invariances may not
necessarily capture all the complicated effects of perspective and
lighting on objects. This motivates a ”blind modeling” of these
real-world view conditions.

II. BASIC FORMULATION

Define y ∈ RN as a certain representation of an observed object
image. Our goal is to find a better sparse representation that is
more invariant to effects of real-world view-conditions. We define
our generative model of image as:

y = HhDx+ ε (1)

where D is a latent dictionary with elements di and sparse
representation x ∈ RM . Here Hh is a certain random linear
transform matrix N × N randomly drawn from a finite set of H
linear transforms ∆ = {H0,H1..HH}, which is assumed unknown
and represents effects of real-world view conditions that we wish
our recognition system would be invariant to. x is thus called a
∆-invariant representation of the object. ε would be a noise term.

With ∆ being unknown (1) is not a amenable sparse recovery prob-
lem. Instead, define ∆-expanded dictionary ∆D as [∆d1∆d2 ..∆dM ]

with “view expansion” of element di ∆di , [H1di H2di .. HHdi].
This gives us an equivalent model{

y = ∆Dx
′ + ε

x′ = x⊗ eh

(2)

where eh is an all-zero vector of length H except with the hth

element having a value of 1.

(2) now contains a more amenable sparse recovery problem. We
can now recover dictionary C as a permutated ∆D , provided that H
and thus size of ∆D is reasonably small for practical recovery. If it
is as we assumed that y comes from some state-of-the-art systems in
which basic levels of translation/scale/rotation invariance is already
accounted for, then H will likely to be reasonable. If we can find
a mapping function f(k) which gives the identity of the “view
expansion” ∆di to which ck, column k of C, belongs, then the
∆-invariant representation x may be recovered from its ∆-expanded
representation x′.

III. CONTRIBUTION

Our work shows if we have sufficient amounts of relevant video
footage containing unlabeled observations of objects we seek to detect
and classify, i.e. image series that fits:

Ys : yt = HhtDx+ ε for t = 1..τ (3)

along with x and thus x′ being sufficiently sparse, f(k) can indeed
be found reliably using a simple clustering operation.

In our experiment, we will be using linear Spatial-Pyramid-
Matching (linear-SPM) [1], a representative state-of-the-art system,
as the baseline. Using the results from linear-SPM, we will apply
our algorithm to produce a sparse representation with improved
view-condition invariance and provide evalution.

The value of our proposed system is that the use of ”blind
modeling” spare us from the need to have exact knowledge of the
complicated effects of real-world view conditions. This unsupervised
process can theoretically be used to post-process any high-level
representation vector of most state-of-the-art systems, and potentially
be applied to other non-image domains.
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Abstract—This work introduces a localisation and identification
method for acoustical sources from array measurements. It is based on
group-sparsity priors on the acoustical field, assumed to be produced by
a small number of sources, but with unspecified directivity. The method
is tested in a passive case, as well as an active setup, where reflectors are
illuminated by a transducer array.

I. INTRODUCTION

Localisation of sources is a classical problem in array processing,
for which numerous methods have been designed, including schemes
based on sparsity priors [1]. However these methods only recover
elementary sources, and cannot treat the case of complex directivities.

In this work, we develop a method aiming at jointly localising
acoustical sources and identifying their directivities. It is based on a
decomposition of the acoustical field on a dictionnary of elementary
sources (monopoles, dipoles, quadripoles, etc.) and group sparsity
priors on the decomposition.

The method in tested in two cases :
• acquisition with a passive in audible range, where acoustical

sources are to be localized from the field produced on a
microphone array;

• underwater acquisition with an active ultrasonic array, when
reflectors (wires) are to be characterized from the retrodiffused
field after being illuminated by the transducer array.

II. SPARSITY MODEL

Sources are assumed to be sparse in space, and their directivities
limited to low-order spherical harmonics (in this work, monopoles
and dipoles, but the generalisation to higher-order harmonics is
straightforward).

In the passive case, the harmonic field radiated at the point xi by
a source localised at the point xi can be expressed as

pij = αh0(|xi−xj |)+βh1(|xi−xj |) sin(θij)+γh1(|xi−xj |) cos(θij)

where θij is the angle between −−→xixj and a reference axis, h0

and h1 are Hankel functions of order 0 and 1. The vector of the
field produced by a source an the array can be decomposed as a
linear combination of three vectors, corresponding to the three first
harmonics : mi = (h0(|xi − xj |))j , di = (h1(|xi − xj |) sin(θij))j ,
d′i = (h1(|xi − xj |) cos(θij))j . The sources being sparse, the total
field measured is a sum of a small set of such vectors. Formally the
measurement vector can be decomposed as

p = Mum + Dud + D′ud′

where M, D, D′ are the dictionnaries of monopoles and dipoles,
and the vectors um, ud and ud′ have identical supports.

In the active setup, a set of measurements is obtained, with the
reflectors illuminated by a different transducer at each measurement.
In this case, the field measured for a single source illuminated by
the transducer k has the same expression than in the active case, but
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Fig. 1. Results of OMP and group-OMP for three active sources

the coefficients of the expansion αk, βk and γk are dependent on
the relative positions of the transducers and the reflector, as well as
the directivity of the emitting transducer. With multiple sources, as
the reflectors are assumed to be fixed between the measurements,
the total field measured keeps the same sparsity pattern. Here the
measurement vector for an given illumination can be decomposed as

pk = Mukm + Dukd + D′u
k
d′

where the vectors ukm, ukd and ukd′ , for every k, have identical
supports.

III. RECOVERY

Algorithms used to recover the sources include mixed norms
minimisation [2], as well as the adaptation of Orthogonal Matching
Pursuit (OMP) to group-sparsity, where, at each iteration, the triplet
(mi,di,d

′
i) maximizing the norm of the orthogonal projection on

span(mi,di,d
′
i) is selected.

Figure 1 shows a comparison of OMP and group-OMP in a simple
case, with three active sources. OMP, with 9 iterations, recovers the
localisations but fails at identifying the directivities, while group-
OMP, with the same dictionnary, recovers both.

Simulations and experimental results will be compared for both
passive and active setup, with different algorithms.
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I. INTRODUCTION

The sparsity-inducing nature of the ℓ1 norm makes it one of
the most popular convex regularizers in signal processing, statistics,
and machine learning. Although independently proposed in several
communities, it is best known by LASSO, the designation proposed
in [9], where it was introduced as a variable selection tool. More
recently, the interest in ℓ1 regularization was boosted by its central
role in compressive sensing [1], [2]. The non-differentiable nature of
the ℓ1 norm has stimulated a large amount of research on efficient
algorithms for solving the optimization problems resulting from its
use as a regularizer (see [10] and the many references therein).

In some scenarios, it makes sense to select/remove (disjoint) groups
of variables, rather than individual ones, which is achieved using
group-norms (e.g., [10], [11], [12]). Several researchers have extended
this approach by allowing the groups to overlap, as a means of
expressing preference for certain structural relationships (namely,
hierarchies) among the selected/removed variables [5], [6], [7], [12].

The optimization problems that result from adopting group-
structured regularizers with overlapping groups are considerably more
challenging than those involving simple ℓp norms or group-norms
with non-overlapping groups; the reason is that the overlaps destroy
the separability between groups that crucially underlies the simplicity
of the algorithms devised for the non-overlapping case.

In this paper, we propose tackling the optimization problems
resulting from the adoption of group-structured regularizers by using
a particular instance of the alternating direction method of multipliers
(ADMM, [3]), recently introduced in [4], which involves no assump-
tions on the overlapping structure (or lack thereof) of the groups.

II. PROBLEM FORMULATION

We consider the optimization problem

min
x∈Rp

1

2
∥Ax− y∥2 + r(x), with r(x) =

k∑
i=1

λi ϕi(xGi), (1)

where A ∈ Rn×p is a matrix, xGi ∈ R|Gi| is the sub-vector of
x corresponding to the indices in the i-th group Gi ⊆ {1, ..., p},
each ϕi is a convex function (the ℓ2 norm, in group-LASSO [7], but
other choices are possible), and λ1, ..., λk are positive weights. No
assumptions are made about group overlap: the groups may overlap
or not; if they overlap, no special structure (such as a hierarchy) is
assumed for the way they do so. If k = p, Gi = {i}, λi = λ, and
ϕi(xi) = |xi|, we recover standard ℓ1 regularization.

A key component of most state-of-the-art algorithms for solving
problem (1) is the so-called Moreau proximity operator of r [6], [10]:

proxr(x) = arg min
u

1

2
∥x− u∥2

2 + r(u). (2)

In the absence of group overlapping, computing proxr boils down to
computing proxλi ϕi

, for i = 1, ..., k [10]. With overlapping groups,
proxr can only be easily computed if the groups are hierarchically
structured and for some choices of the ϕi (ℓ1, ℓ2, or ℓ∞ norms) [5].

III. PROPOSED APPROACH

We propose addressing problem (1) by mapping it into the form

min
x∈Rp

m∑
j=1

gj(Hjx), (3)

where the gj are convex functions and the Hj are matrices, as fol-
lows: m = k+1, gj = λjϕj , for j = 1, ..., k, gk+1(u) = ∥u−y∥2

2,
Hk+1 = A, and (for j = 1, ..., k) Hj is a |Gj | × p matrix with
the subset of rows of the identity corresponding to group Gj . Then,
we handle this problem using the algorithm proposed in [4] (which
is an instance of ADMM). We show convergence of the algorithm,
regardless of matrix A, as long as any index i ∈ {1, ..., p} belongs
to at least one group.

Each iteration of the algorithm involves computing the proximity
operator of each function gj and minimizing a quadratic function.
For problems of moderate size, the Hessian of this function can be
inverted only once, with cost O(min{n, p}3), and this inverse used
throughout the iterations. For large problems, we avoid the cost of the
inversion by using to a (warm-started) Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm, or a limited memory version thereof [8].

We report experiments on identifying hyperspectral signatures on
large dictionaries (equipped with an non-hierarchical overlapping
group structure); one of the regularizers in (1) is, in this case, the
indicator of the probability simplex (on the full vector x). To the best
of our knowledge, this problem is out of the reach of other recent
algorithms for overlapping group regularization.
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I. I NTRODUCTION

At the Neonatal Intensive Care Units, continuous electroencephalo-
graphic (EEG) recordings are regularly performed for the assessment
of hypoxic brain injuries of newborns. Nowadays, there is a tendency
for the development of wireless EEG devices, that would decrease the
amount of movement artifacts and provide a comfortable surrounding
for the babies. One of the major issues is the large quantity of data
that has to be transmitted over the wireless link - approximately
20 EEG channels with a sampling frequency (fs) of 256Hz. This
significantly affects the battery life, as the recordings should be
continuous for a period of 48 up to 72 hours. We are investigating
the applicability of the compressive sensing theory for this purpose.
Therefore, finding the sparse approximation of the complex neonatal
EEG morphology is the preliminary step of this work.

II. M ETHODS

In order to provide a sparse representation of the neonatal EEG
signal, several bases have been explored, namely wavelets,Discrete
Cosine Transform, Slepian and local cosine basis. However,none
of these orthonormal bases have managed to provide an accurate
approximation when retaining only a relatively low number of
coefficients. It has been shown that an adult EEG signal can be
sparsely approximated in an overcomplete Gabor dictionary[1] and
that compressive sensing theory can be applied for the acquisition
process. Following the same approach, neonatal EEG represented in
Gabor dictionary yields to a nearly sparse decomposition aswell.

For the reconstruction purpose several algorithms have been tested:
OMP, BP and IHT. Due to its simplicity and fast and accurate
performance with a relatively low number of measurements, IHT
has been chosen for further experiments. The entries of the sensing
matrix were chosen as i.i.d. Gaussian.

III. R ESULTS

An overcomplete Gabor dictionary has been created with an atom
length of 1024 samples and it consisted of 40.960 atoms. In that
way, we can represent 4 seconds (fs = 256Hz) of the EEG signal,
with Signal-to-Error Ratio (SER) varying from5% to 25%, and a
Normalized RMSE (NRMSE) between1% and 5% using 100 to
300 measurements (0.095− 0.3 compression rate). As a preliminary
study we processed 300 EEG segments, with different number of
measurements. Significant number of these segments showed very
complex morphology (background EEG) for which the reconstruction
error was usually higher than for structured EEG patterns.

Obtained results suggest that we can accurately reconstruct EEG
patterns with highly nonstationary dynamics with only15− 30% of
measurements, whereas the structured and simpler wave patterns we
can reconstruct with as little as5−10% measurements. In that sense
we can achieve a desired compression from 10 up to 30 percentage
with respect to the reconstruction error.
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Fig. 1. The reconstruction of 13 channels of a moderately complex signal
with 150 measurements (compression rate14.65)

IV. D ISCUSSION

The objective of previously presented approach was to examine
whether neonatal EEG can be sparsely approximated in a redundant
dictionary. As the accuracy of the reconstruction is concerned we
can consider EEG as a combination of two separate parts: back-
ground EEG and structured EEG patterns. Background EEG usually
represents ongoing, rather chaotic part of the EEG activity(burst
and suppression intervals) which does not posses much informative
features. Therefore, from clinical point of view, slightlyhigher
reconstruction errors can be tolerated for these EEG segments. On
the other hand, structured EEG patterns such as epileptic seizures
are represented either by an oscillatory EEG behaviour or byre-
current spike train series. Occurrences of such morphologies are
very important for clinicians and high accuracy in reconstruction
is necessary. Fortunately, these EEG segments are morphologically
simpler and can be accurately reconstructed with smaller number of
measurements. In this work we have used a highly redundant Gabor
dictionary. As the future work is concerned, parametric dictionary
design should be incorporated, which will provide better tiling of the
time frequency plane. In that way we can obtain a dictionary with
higher incoherence and with higher exact recovery conditions [2]. In
the sense of sparse approximation, we will investigate the possible
application of algorithms for dictionary learning [3]. We hope that
application of various dictionary learning techniques will enable us
better sparsification and classification of the desired EEG patterns.
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I. I NTRODUCTION

The estimation of densities inR3, given 2-D images involves the
inversion of the exercise of projection of the convolutionρ(x)◦η(x)
of the unknown densityρ(x) with a blurring or correction function
η(x), (which may or may not be an unknown), along a given
orientation. Here,ρ(x) ∈ R

3 is piecewise continuous but may not be
piecewise smooth, is non-negative and bounded inR

3. The correction
function η(x) > 0 is in general,η : R

3
−→ R

3. The traditional
implementation of the inverse Radon transform is rather limited if the
orientation is not a measurable, (Panaretos 2009, Chakrabarty 2010,
Chakrabarty et. al 2008) or if there is noise in the data or, as in the
application we discuss, if the underlying 3-D structure is multimodal,
with the isolated modes manifesting sharp boundaries and individual
substructure - in which case a Gaussian mixture model is insufficient.
We present a new methodology that allows for a non-parametric
reconstruction ofη(x) and the heterogeneousρ(x) of a cuboidal
slab of a given material sampleS, by performing an inversion of
2-D images recorded in electron scattering experiments.

Learning of 2 unknown functions from a single image is an ill-
posed inverse problem which in the Bayesian approach that we adopt
here, will admit only prior-driven solutions. The situation supple-
mented by only weak priors onρ(x) readily suggests enhancement
of sparsity in the models and/or expansion of information domain. In
fact, both are implemented in our methodology - we increase sparsity
by invoking the inherent smoothness that is imposed by the data and
expand information by suggesting the recording of multiple images
at multiple values of a model parameter, namely beam energy.

In the experiments, electron beams of different energiesEk, k =
1, . . . , Neng are made incident at different points onS, with a
uniform distanceδ between theith and i + 1th beam pointings,
(i = 1, . . . , Ndata) whereδ is set by the relevant instrumentation. The
atomistic interactions between the beam electrons and the material
atoms causes the distribution of the electron mean-free paths to
become pear-shaped, and the pear size increases with beam energy.
In our model we approximate the pear formed at thekth energy, at
the ith pointing, as a hemi-sphere centred on theith beam pointing
(x(i)

1 , x
(i)
2 ), with (penetration depthh(i)

k equal to) radiusR0
(i)
k , ∀i, k.

The recorded 2-D radiation density from this pear isIk(x
(i)
1 , x

(i)
2 ).

Then

Ik(x
(i)
1 , x

(i)
2 ) =

R R0
(k)
i

0 [
R h

(k)
i

0 dz
R

∞

−∞
ρ(R, z)η(z − x3, γ, θ)dx3]2πRdR

R R0
(k)
i

0 2πRdR

,

(1)
whereR2 := (x− x(i))2 + (y− y(i))2, R0

(i)
k is the maximal radius

of this pear. An axisymmetric geometry is assumed for the density
within each pear and we assumeη : X3 −→ X3.

The 3-D desity structure that gives rise to the data discussed
above, is viewed as a tree with theith beam location identified

as theith node, (i = 1, . . . , Ndata), and thekth attribute at any
node is the density in the inter-pear volume between thekth and
k − 1th pears, (0th pear has zero volume,k = 1, . . . , Neng), i.e.
as ρ

(i)
k := ρ(xi, yi, z), z ∈ [h

(i)
k−1, h

(i)
k ). In this work, we attempt

an identification of the density tree by representation in terms of
separable basis functions, the choice of which is motivated to reflect
the smoothness that the data imposes. This case reflects the inter-
nodal independence of attributes at the each node. We refer to
this situation as Case I. If however,̂ρ(xi, yi, z) depends on beam
pointings other than theith one, the set of basis functions are
still separable inz but have richer inter-nodal dependence that can
be modelled using nearest-neighbour contributions, the closed-form
solutions of which have been identified, using Stoke’s Theorem from
differential geometry (Case II).

For Case I, we have the simple recursive relationα
(i)
k =

I
(i)
k − I

(i)
k−1

R h
(i)
k

h
(i)
(k−1)

η(z)dz

, I
i
0 = h

i
0 = 0, ∀ i. The mean structure of the

assumed Gaussian likelihood, is borrowed from this relation as the

productα(i)
k

R h
(i)
k

h
(i)
(k−1)

η(z)dz. The variance is the noise in the data.

This likelihood is then used to write the posterior probability for the
unknowns, given the data, and truncated normal priors. This high
dimensional posterior is sampled from using an adaptive Metropolis-
Hastings (Hario et. al, 2005), to learnρ(x, y, z) andη(z).

Fig. 1. Slice though theY = 0 plane of the learnt density is shown as a
contour plot in theX − Z space for 2 different simulated data. The density
estimate at the median of the inferred 90% credible region is showed in solid
lines, superimposed on the true density (in filled colured contours).
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Abstract—Raman spectroscopy is a powerful tool for quantitative
analysis of mixtures, it is relatively fast and sensitive and it allows to
follow the distribution of chemical species according to an evolution
parameter. Non-negative matrix factorization (NMF), in a contrained
version, is the source separation method chosen to estimate the chemical
species and their concentrations. Influence of noise level, peak shifts or
broadening are compared through Monte-Carlo simulations.

I. INTRODUCTION

For quantitative analysis of Raman spectra (Fig. 1), self-modelling
curve resolution methods [1], [2], [3] have become the standard tools
in the last 20 years. Nevertheless, the NMF approach, introduced in
other fields [4], [5], has been used for different Raman applications
during the last years such as detection of target spectrum [6] or
separation of specific markers [7].

Fig. 1. Raman spectra mixtures

II. METHODS

The NMF problem consists in finding a factorization of a non-
negative matrix V of size F ×N with non-negative matrices W and
H of sizes F ×K and K ×N , respectively:

V ≈WH (1)

In our case, K is the number of chemical species supposed to be
known here, F the number of experimental spectra and N the number
of points per spectra. Standard NMF approach takes into account
the non-negativity constraints of the data but the non-unicity of the
solutions is a issue. Sparseness of the sources can be controlled as
presented in [10]. Integrating additivity and non-negativity constraints
can be solved using a bayesian approach if computational time is not
a constraint [9]. In the present case, a constrained version of the
original NMF is used using the formalism in [8]. Given a matrix V,
the problem is finding an approximation with non-negative matrices
W and H by minimizing a cost function such as

f(W,H) = ||V −WH||2 + αJ1(W) + βJ2(H) (2)

As pure spectra of chemical species were available, they were used
for the inizialiation of W which is crucial. Nevertheless, these spectra
do not always match with the experimental spectra of each species
in the mixture solutions. Thus, a smooth regularization is ensured by
setting J1(W)) = Dα||W −W0||2 following approaches in [8], [7].

III. RESULTS

The use of a constrained version NMF allowed to obtain more
robust results (compared to standard NMF even in the case of specific
initialization of W) for both spectral sources and concentrations
(Fig. 2), through different Monte-Carlo simulations on noise level,
peak shifts or broadenings.

Fig. 2. Left: Pure (initial) reference spectra, corresponding to the columns
of W. Right: Mean estimated concentration evolutions (lines of H) with
associated standard deviations for each species, in the case of shifted peaks.

IV. CONCLUSION

With constrained NMF, a more robust quantitative analysis for
Raman spectra is achieved. Use of chemical knowledge (such as
additivity) on the concentration laws should further improve the
accuracy of the method.
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Abstract—We present a new approach to image segmentation based
on sparse coverings of the image domain by shape templates. The basic
idea is to formulate the segmentation problem as a sparse representation
problem, utilizing new mathematical tools from l1-minimization and
compressed sensing.

METHODS AND RESULTS

Given a large set of shape templates and a pre-segmentation, we
are required to segment a noisy image where objects may overlap by
taking into account prior knowledge about the shape of the objects
and their parts. The parts may be partially occluded and the location
and nature of occlusion is unknown. This can be modeled as a sparse
error that affects only a few pixels in the input image while the ”true”
segmentation is represented as a sparse linear combination of the
entire shape-templates training set.

Unfortunately, the shape dictionary - built by stacking all the
training shapes and their translations to all pixel positions as column
vectors - is not incoherent, but a truly redundant dictionary. As a
consequence, all currently available theoretical recovery conditions
predict a poor performance of the l1-minimization approach (i.e. exact
recovery in the coefficient domain). However, we show empirically,
see Fig. 2, that accurate recovery is possible for moderate sparsity of
the basic templates and dense errors, similar to the work in [1].

We discuss the implications of these results on our application, and
illustrate our approach on real world images, see Fig. 1, by numerical
examples that employ large-scale convex programming.
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Fig. 1. Separating chain links from the background and from each other
by convex optimization in terms of a sparse covering of the image by
shape templates. The dictionary of shape templates was generated from four
templates by translation, rotation and scaling. The approach presented in this
work copes with a significant amount of overlapping templates and occlusion.
Left to right: Original image, pre-segmentation using a thresholded distance to
the color red as foreground indicator, shape templates used for segmentation,
and the final result.

Fig. 2. The three templates (left) together with their translations build a
dictionary. The true segmentation consisting of a sparse covering with only
a few templates is recovered exactly. Recovery performance for increasing
density of the error (including both salt and pepper noise and occlusion)
improves with increasing image resolution (right).
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I. ABSTRACT

Distributed source coding (DSC)/compression, pioneered by
Slepian and Wolf [1], and Wyner and Ziv [2] in 1970’s,
is an important topic of signal processing and information
theory. DSC exploits the correlation of the input data by
different nodes to reduce the transmission rate. In many cases,
the coding can be as efficient as if the sensors were co-
located and performed joint encoding. Compressed sensing
(CS) [3], [4] has gained significant interest in many theoretical
and applied areas because it permits simultaneous sensing
and compression. Lately, a new framework called distributed
compressed sensing [5], [6] has been introduced to exploit both
intra- and inter-signal correlations of the distributed signals
from a CS approach. The technique resembles DSC in both
problem formulation and applications.

Since distributed CS is an analog technique, a fundamental
open question is to find the best source coding scheme for
the distributed CS samples. As a first step towards answering
this question, this paper presents some initial results on
distributed source coding in this context by exploiting the
correlation among the CS samples at different sensors. The
whole architecture of our system consists of two parts, which
are distributed CS using the Toeplitz sensing matrix and DSC
using nested lattices. The framework is depicted in Fig. 1.

The correlated sources are first processed separately using
CS. Then the samples are sent into the second stage for
DSC. After transmission through the lossless channel, at the
receiver is the joint source decoder followed by CS recovery.
We mostly use Wyner-Ziv coding [2] based on the nested
lattice scheme, where only one source is encoded lossy and
transmitted to the decoder, and the signal is reconstructed with
a fidelity criterion under the assistance of the side information
which is the other signal.

Extensive simulations have been carried out to examine
the reconstruction performances of different images. For il-
lustration purposes, we only present here the recovery re-
sult of a tank image ”tank1”, while our conclusions drawn
are applicable to other input sources. The image size is
150×330 = 49500 pixels. And we use another image “tank2”,
which is slightly different as the side information for jointly
decoding. The reconstruction result is shown in Fig. 2. The

compression rate of CS is 20% in this simulation. Of course,
higher sampling rate means better recovery performance. The
result (c) shows that the original image can be recovered with
acceptable PSNR.

Compressed 
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X1 Wyner-Ziv 

Encoder

Wyner-Ziv 

Decoder

Compressed 
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Fig. 1. Distributed CS based Wyner-Ziv coding.

(a) Original (b) Side Information

(c) Recovery, PSNR 31.3
(d) Error
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Fig. 2. (a) Original image “tank1”. (b) Side information image “tank2”. (c)
Recovery result of proposed Wyner-Ziv Distributed CS. (d) The error between
original image and recovery result.
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I. INTRODUCTION

Underdetermined speech separation is a challenging problem that
has been studied extensively in recent years. A promising method to
this problem is based on the so-called sparse signal representation.
Using this technique, we have recently developed a multi-stage
algorithm [1], where the source signals are recovered using a fixed
dictionary obtained by e.g. the discrete cosine transform (DCT). In
this abstract, instead of using the fixed dictionary, we present three
methods for training adaptive dictionaries for the reconstruction of
source signals, and compare their performance.

II. STRATEGIES FOR TRAINING THE ADAPTIVE DICTIONARY

Following our previous work [1], here we propose a separation
system depicted in Figure 1 for the case of four sources and two
mixtures. In this system, the mixing matrix is estimated in the
transform domain by a clustering algorithm as in [1]. However,
different from [1], the source signals are reconstructed from multiple
adaptive dictionaries with each obtained by one of the alternative
training strategies described below.

In the first strategy (STD), for each source, we train a dictionary.
Therefore four different dictionaries are trained from the four original
sources respectively. They are then combined to form a single
dictionary matrix for separating the source in the following stages.
In the second strategy (ESTD), the dictionaries are learned from the
coarsely estimated sources which can be obtained, for example, from
the traditional DCT based separation method as decribed in [1]. In the
third strategy (MTD), a single dictionary is directly learned from the
mixtures. In the upper part of Figure 1, the ESTD method is depicted.

Fig. 1. The flow chart of the proposed system for separating four speech
sources from two mixtures.
Firstly the sources are estimated from the mixtures by using e.g. the
DCT. Secondly, the dictionaries are learned from these four coarsely
separated sources, whose atoms are then used to reconstruct the
sources at the second separating stage. In the dashed box, dictionary
learning based on the MTD method, i.e. directly from the mixtures, is

illustrated. For the clustering and separating stages, the same method
as in [1] has been used. In all the three dictionary learning strategies,
the K-SVD algorithm [2] was used to obtain the dictionary atoms.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed algorithm by performing
the experiments using four speech sources in the TIMIT database,
which are English male (EM), English female (EF), Japanese female
(JF) and Chinese female (CF) speech respectively. The sources have
a duration of 5 seconds, sampled at 10 kHz. For objective quality
assessment, we use the two global performance criteria defined in the
BSSEVAL toolbox [3] to evaluate the estimated source signals, which
are the signal to distortion ratio (SDR) and the source to interference
ratio (SIR),

Based on the estimated mixing matrix obtained from the clustering
stage, we can recover the four speech sources using the DCT dictio-
nary and the adaptive dictionaries based on the STD, ESTD and MTD
methods. The results are presented in Table I and II. From these

DCT STD ESTD MTD
EM speech 7.59 9.89 6.93 -1.41
EF speech 9.53 11.44 9.26 3.54
JF speech 2.73 7.38 2.13 -4.22
CF speech 14.59 15.05 14.13 8.91

TABLE I
SDR (IN DB) MEASURED FOR EACH ESTIMATED SPEECH SOURCE.

DCT STD ESTD MTD
EM speech 14.23 19.47 14.49 2.81
EF speech 11.35 30.49 11.35 5.25
JF speech 6.07 22.21 5.97 -2.12
CF speech 18.12 25.89 18.34 12.50

TABLE II
SIR (IN DB) MEASURED FOR EACH ESTIMATED SPEECH SOURCE.

tables, we can observe that the sparation performance using STD
trained dictionary is considerably better than using the DCT dictioary.
Using the ESTD trained dictionary, the results are close to the DCT
dictionary. However, it is difficult to obtain good results by using the
dictionary learned from the mixtures, i.e. the MTD method. These
results suggest that the properly learned dictionaries outperform the
fixed dictionary in underdetermined speech separation.
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Abstract—Motivated by experiments with our homebuilt com-
pressive imaging system, we numerically explore subsampled circu-
lant matrices for compressive imaging, imaging based on the theory
of compressive sensing, to show that different constructions of such
matrices have distinct phase diagrams in so-called “undersamping
phase space.” Such an investigation will be useful for guiding
principles of instrument design where hardware constraints must
be balanced with instrument performance.

I. INTRODUCTION

Recent work has detailed the promise and theory of circulant
matrices as one possible strategy in compressive sensing [1],
[2], where generally one is interested in solving an intentionally
underdetermined system of equations represented by y = Φx.
Here y are our observations, which in an optical system is
a voltage registered digitally from an analog photodetector
that converts light intensity to a correpsonding electric po-
tential. Each individual measurement can be represented as
yi = 〈φi, x〉, where φi is the ith reshaped row of Φ and x is
the scene to be imaged [3]. Following the formalism of [1],
we have constructed our measurement matrix Φ by taking m
rows from an N ×N circulant matrix Φ◦, or mathematically,

Φ =
1√
M
RΩΦ◦, (1)

where RΩ selects M rows from Φ◦ according to the index
set Ω ⊂ {1, 2, . . . , n} with cardinality equal to the number
of measurements |Ω| = M . In this work we show that
for circulant matrices generated by a Bernoulli seed vector
with entries from {0, 1}, there is a marked difference in
the performance of such subsampled circulant measurement
matrices depending on the method for selecting the index set
Ω.

II. SUMMARY OF INVESTIGATION

During initial tests with random circulant matrices in our
homebuilt compressive imaging system, we noticed that images
taken with Ω built sequentially, i.e. Ω = {1, 2, 3, . . . ,M}, are
lower quality than those taken with measurement matrices Φ
built from randomly chosen indices in Ω. Recently Donoho and
Tanner presented a method for empirically testing where in so-
called “undersampling phase space” a certain reconstruction
algorithm with specified measurement ensemble transitions
from low probability of success to high probability of success
[4]. We apply this method to our specific case of subsampled
circulant matrices as measurement ensembles. With the CVX

convex optimization package [5], we solve both the noiseless
basis pursuit and linear program problems over many points
in undersampling phase space to explore the differences be-
tween the phase diagram for randomly subsampled circulant
matrices the phase diagram for sequentially subsampled cir-
culant matrices. We chose CVX for initial tests becuase it is
suitably robust whereas iterative solvers we tested failed. We
performed at least 28 trials on 15,876 evenly spaced points
(δ = M/n, ρ = k/M), where N is the length of the signal,
m is the number of measurements, and k is the sparsity of
the signal (see Figure). We further discuss the implications for
instrument design in general.

(a) Sequentially subsampled (b) Randomly subsampled

Figure: Phase diagrams from solving BP with sequentially and
randomly subsampled circulant matrices with Ntrials ≥ 28.
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Abstract—Motor imagery based Brain Computer Interface (BCI)
systems provide a new communication and control channel between the
human and an external device with only imagination of limbs movements.
Because Electroencephalogram (EEG) signals are very noisy and non-
stationary, powerful classification methods are needed. We propose a new
classification method based on sparse representation of EEG signals and
ell-1 minimization. This method requires a well constructed dictionary.
We show very high classification accuracy can be obtained by using our
method. Moreover, our method shows improved accuracy over a well
known LDA classification method.

I. INTRODUCTION

Motor imagery based EEG signals are very sensitive to noise and
artifacts, for example caused by unwanted eye movements. Thus,
powerful signal processing methods are needed. In this paper, we
are interested in developing a new classification method for the BCI
system. Using right hand ’R’ and foot ’F’ of motor imagery data sets,
we propose a new sparse representation based classification (SRC)
method. The SRC method is motivated from compressed sensing (CS)
theory. SRC works by finding a sparse representation of the test signal
in terms of the training signals included in the dictionary. To make a
proper dictionary, we use a common spatial pattern (CSP) which has
distinguishable property for different classes. CSP is a powerful signal
processing technique suitable for EEG-based BCI system [1]. After
CSP filtering, We use sensorimotor rhythms (Mu and Beta rhythm)
as a feature of BCI system [2].

II. METHODS

Let Nt be the total training signals. We define a dictionary matrix
Ai = [ai,1,ai,2, ..., ai,Nt ] for class i = R, F , where each column
vector a ∈ Rm×1 is obtained by CSP filtering, FFT of the time
domain signal in a training trial. By combining the two matrices, we
form the complete dictionary, A := [AR;AF ]. We apply the same
procedure done to obtain the columns of the dictionary to the test
signal. Then, this test signal can be sparsely represented as a linear
combination of some columns of A. We can represent this as a matrix
algebraic form: y = Ax.

We use certain FFT coefficients (Mu and Beta rhythms) as a fea-
ture, and the linear equation becomes under-determined (m < 2Nt).
CS theory has shown that the ell-1 norm minimization can solve this
under-determined system well in polynomial time [3]. Unlike the
conventional ell-2 norm minimization, the ell-1 norm minimization
gives a sparse representation result. In this study, we use the basis
pursuit method, one of the standard linear programming methods [4].

III. RESULTS

We have analyzed five data sets, which have same 140 trials for
each class. Figure 1 shows the SRC classification accuracy of all sub-
jects. We can see the SRC method shows good performance when the
number of training signals is large enough. For all subjects, average
accuracy grows when the number of training signals increases.
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Fig. 1. Average accuracy of SRC with different number of training signals

IV. CONCLUSIONS

We apply the idea of sparse representation as a new classification
method to the motor imagery based BCI. The sparse representation
method needs a well designed dictionary composed of training data.
We use the CSP filtering and the FFT to produce the columns of
the dictionary. We have shown that a good classification result can
be obtained by the proposed method. In addition, we have compared
with the conventional approach such as linear discriminant analysis
(LDA) method, which is well known for robust performance for the
BCI system. Our result shows proposed method better than LDA.
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Abstract—In this paper, we propose a new compressive sensing
framework for sensor networks. Unlike the conventional approaches, we
consider the design of sensing matrix with the prior knowledge of the
channel between the signals and the sensors. We determine that full
or partial knowledge of the channel at sensors enables effective sensing
matrix design and supports a good signal recovery. We discuss some of
our key results and scope for our future research.

Index Terms—Compressive Sensing, Sensing matrix, Sensor networks.

I. INTRODUCTION

Compressive sensing (CS) is an emerging signal acquisition tech-
nique that recovers a sparse signal from few linear measurements [1].
Due to its popularity, CS is currently applied in many areas such as
coding, signal processing and wireless sensor networks [2]. In this
paper, we present a new CS framework for wireless sensor networks.

We consider a sensor network consisting of S sensors connected
to a centralized fusion center. Each sensor measures a desired sparse
signal and then compresses the sensed signal using a sensing matrix.
The compressed measurements from different sensors are sent to the
fusion center for joint recovery of the sparse signals. Unlike the
conventional framework [3], we consider realistic scenarios in which
there exists channel between the signal to be sensed and the sensor,
such as in underwater acoustic systems and seismic sensor systems.
We observe that the signals thus acquired have a lot of redundancy
which can be handled efficiently by the proper design of sensing
matrices using the prior knowledge of the channel.

In this paper, we consider a wireless sensor network having S
number of sensors deployed at random locations. Let s denote an
K-sparse signal of length N (K � N). The signal received at the
j-th sensor can be modeled by xj = Cjs, where Cj is an (N +L−
1) × N matrix which models the delay dispersed channel between
the intrinsic source to the j-th sensor. The sparse signal at the j-th
sensor is then compressed by an M × (N +L−1) random Gaussian
matrix Fj [1] to obtain the linear measurement yj = Fjxj . The joint
received vector obtained at the fusion center can then be modeled as

y = FCs + n (1)

where y = [yT
1 , · · · ,yT

S ]T , F is a block diagonal matrix with Fjs as
the diagonal entries and C = [CT

1 · · ·CT
S ]T . The goal of the fusion

center is to recover xjs and the intrinsic sparse signal s, from y.
One of the key challenges in our framework is the design of a good

sensing matrix at each sensor. With the existence of the channel, the
conventional Gaussian sensing matrix in (1) may not be enough to
capture the maximum information because the sensing matrix design
now has to depend on the characteristics of the channel. Therefore,
we would like to utilize the channel information in the sensing matrix
design. If the channel matrix Cj is exactly available at the j-th sensor,
then one would like design the sensing matrix Fj based on Cj . At
the fusion center we reconstruct the sparse signal by L1 minimization
with the recovery matrix A = FC. The incoherence of A, which
should be low for good signal recovery, now depends on Cjs. Our

aim is to design good sensing matrices Fjs based on the exact or
partial knowledge about Cjs such that the recovery matrix A behaves
incoherently. In addition, it would be interesting to investigate the
minimum measurements required for either exact or approximate
recovery of the sparse signals under this realistic conditions.

II. DISCUSSIONS

We have carried out a preliminary investigation to determine the
number measurements needed at the fusion center for exact signal
recovery when the channel is known. Our preliminary study exposes
a few surprising results obtained by incorporating additional channel
information for sensing matrix design. Unlike the conventional theory
which demands O(k logN) measurements for the unique L1 solution,
we show that, only sub-sparse measurements from each sensor is
needed to obtain perfect L1 signal recovery at the fusion center. This
achievement is possible since we properly use the available channel
information for signal acquisition. From our preliminary studies we
found that as the number of sensors increases, the measurements
needed for a given probability of recovery decrease.

III. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a compressive sensing framework
with application to wireless sensor networks. In our framework, we
have considered the design of sensing matrices to obtain a low
coherent recovery matrix by making use of the prior knowledge of
the channel. We would like to proceed in the following directions for
our future research:

• Given the channel matrices Cjs exactly or partially, how to
design good sensing matrices Fjs such that A is incoherent?

• What is the relationship between the channel parameters and the
coherence of the recovery matrix?

• What is the condition for the unique L0 solution? How is this
condition related to the channel parameters?

• What is the equivalence relation for the existence of the unique
L1 solution? How does it depend on the channel parameters?

• What is the restricted isometry property (RIP) in this practical
situation?

• How much information can we obtain from a sensor network
given coverage and sensor density?

• How does the correlation among the sensors affect the informa-
tion obtainable from the network?

Acknowledgement: This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean government (MEST)
(Do-Yak Research Program, N0. 2010-0017944)

REFERENCES

[1] Richard Baraniuk, “Compressive sensing,” IEEE Signal Processing
Magazine, vol. 24, no.4, pp. 118-121, 2007.

[2] Emmanuel Candes and Michael Wakin, “An introduction to compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no.2, pp. 21-30,
2008.

[3] M. F. Duarte et al, “Distributed compressed sensing of jointly sparse
signals,” in Proc. of 39-th ACSSC, CA, November 2005.

105



Sparse Phase Retrieval

Shiro Ikeda
The Institute of Statistical Mathematics,

Tachikawa, Tokyo 190-8562, Japan
shiro@ism.ac.jp

Hidetoshi Kono
Japan Atomic Energy Agency,

Kizugawa, Kyoto 619-0215, Japan
kono.hidetoshi@jaea.go.jp

Coherent X-ray Diffraction Imaging (CXDI) is a technique for the
2-dimensional (2D) and 3D reconstruction of nanoscale structures.
The detector receives the photons scattered by the object, and ideally,
the diffraction pattern gives the power spectrum of the electron
density. Since we are only provided the power spectrum and the
phase is lost, we need to retrieve the phase in order to reconstruct
the structure from the diffraction image.

Let fxy ≥ 0 be the electron density of a molecule projected onto a
2D plane. We consider the discretized coordinate,x, y = 1, · · · , M

and ideal diffraction pattern is|F (u, v)|2 where, F (u, v) is the
Fourier transform off(x, y) as follows,

Fuv =
1

M

∑

x,y

fxy exp
(2πi(ux + vy)

M

)

. (1)

A widely used phase retrieval method is the hybrid input-output
(HIO) method [1], [2]. The HIO method set a support region and
assumefxy = 0 outside the support and estimate the phase with an
iteratively process. It effectively solves the problem forhigh signal-
to-noise ratio measurements.

Recently, a new type of coherent beam, x-ray free electron lasers
(XFELs), became available. This new technology can potentially pro-
vide a novel mean to determine the three-dimensional (3D) structure
of biomolecules from the diffraction data of single molecules instead
of conventional crystallography [3], [4]. One of the crucial processes
of single molecule imaging is the phase retrieval from a veryweak
diffraction due to the ”single” molecule. Figure 1a shows a simulated
electron density of a biomolecule. If the power spectrum is obtained
as in Fig. 1b, the HIO method will successfully reconstruct the 2D
density. However, the simulated result of the diffraction pattern would
not be any better than Fig. 2a. The diffraction image is so noisy that
the HIO method does not even converge.

Here, we propose a new approach, the sparse phase retrieval (SPR)
method [5], for retrieving phases of diffraction data whichwill be
obtained by XFELs. Instead of assuming the support region, we use
the Bayesian statistics as in [6], employing a sparse prior.Let Nuv

 

 

(a) Electron density of lysozyme. (b) Ideal diffraction pattern.

Fig. 1. (a) 2D electron density of a protein, lysozyme. (b) Anideal 2D
diffraction image of lysozyme without noise.

be the number of the photons detected at(u, v) of the detector.
It is natural to assume eachNuv follows a Poisson distribution
independently,

p(N |F ) = p(N |f) =
∏

uv

|Fuv|
2Nuv exp(−|Fuv|

2)

Nuv !
, (2)

where, N = {Nuv}, F = {Fuv}, f = {fxy}, and the fact
F is a deterministic function off was used. Assuming a sparse
prior of f as π(f) ∝

∏

xy exp(−ρxyfxy), whereρxy ∈ ℜ+, we
compute the maximum a posteriori (MAP) estimator, and the SPR
method computes the MAP estimate for the density reconstruction.
The estimatef̂ is the maximizer of the following function,

ℓ(f |N ) =
∑

uv

(

Nuv ln |Fuv|
2 − |Fuv|

2
)

−
∑

xy

ρxyfxy.

The sparse prior automatically sets many entries off equal to0
without specifying the support region and the sparsity is adjusted
by modifying ρxy. Figure 2b shows the density reconstructed by the
SPR method. Compared to the HIO method, the SPR method gives
better results under the noise. This is a new promising direction for
phase retrieval in practice.
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(a) Simulated diffraction pattern. (b) Reconstructed density.

Fig. 2. (a) A simulated diffraction image of lysozyme under arealistic
situation. (b) A reconstructed density images with SPR method.
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Abstract—In this paper, we propose different prior modelling for
signals and images which can be used in a Bayesian inference approach
in many inverse problems in signal and image processing where we want
to infer on sparse signals or images. The sparsity may be directly on the
original space or in a transformed space. Here we consider itdirectly on
the original space (impulsive signals). These models are either heavy tailed
(Generalized Gaussian, Weibull, Student-t or Cauchy) or mixture models
(Mixture of Gaussians, Bernouilli-Gaussian, Bernouilli-Gamma, Mixture
of translated Gaussians,..). Depending on the prior model selected, the
Bayesian computations (optimization for the Joint MaximumA Posteriori
(MAP) estimate or MCMC or Variational Bayes Approximations (VBA)
for Posterior Means (PM) or complete density estimation) may become
more complex. We propose these models, discuss on differentpossible
Bayesian estimators, drive the corresponding appropriatealgorithms, and
discuss on their corresponding relative complexities and performances.
We then show some simulation results of the application of these methods
to a deconvolution problem and to a sources separation of sparse signals.

I. I NTRODUCTION

In many generic inverse problems in signal and image processing
we want to infer on an unknown signalf(t) or an unknown image
f(r) through an observed signalg(s) or an observed imageg(s)
related between them through an operatorH such as convolution
g = h ∗ f or any other linear or non linear transformationg = Hf .
When this relation is linear and we have discretized the problem, we
arrive to the relation:g = Hf+ǫ wheref represents the unknowns,
g the observed data,ǫ the errors of modelling and measurement and
Hthe matrix of the system response.

The Bayesian inference approach then is based on the posterior
law:

p(f |g,θ1,θ2) =
p(g|f , θ1) p(f |θ2)

p(g|θ1,θ2)
(1)

wherep(g|f ,θ1) is the likelihood,p(f |θ2) the prior model,(θ1,θ2)
are their corresponding parameters (often called the hyperparameters
of the problem) andp(g|θ1,θ2) is called the evidence of the model.

One of the main steps in the Bayesian approach is the prior
modelling which has the role of translating our prior knowledge on
the unknown signal or image in a probability law. Sparsity isone of
the prior knowledges we may translate. The main objective ofthis
paper is to see what are the different possibilities.

The second main step in the Bayesian approach is to do the
computations: either optimization when the Maximum A posteriori
(MAP) is selected or numerical approximations such as MCMC or
the Bayesian Variational Approximations (BVA) when the Expected
A posteriori (EAP) estimation is selected or when we want to explore
the whole posterior probability law.

In this paper, we propose different prior modelling for signals
and images which can be used in a Bayesian inference approach
in many inverse problems in signal and image processing where
we want to infer on sparse signals or images. The prior models
discussed are the following: Generalized Gaussian (GG), Weibull
(W) and Rayleigh (R), Student-t (St) and Cauchy (C), Mixture

of two Gaussians (MoG2), Bernouilli-Gaussian (BG), Bernouilli-
Gamma (BGamma), Mixture of three Gaussians (MoG3) and Mixture
of one Gaussian and two Gammas (MoGGammas). Some of these
models are well-known, some others less. In general, we can classify
them in two categories: i) Simple Non Gaussian models with heavy
tails and ii) Mixture models with hidden variables which result to
hierarchical models.

Depending on the prior model selected, the Bayesian computations
(optimization for the MAP estimate or MCMC or VBA for EAP or
complete density estimation) may become more complex. The second
main objective of this paper is to discuss on the relative complexities
and performances of the algorithms obtained with the proposed prior
law.

The rest of the paper is organized as follows:
In section II, we present in details the proposed prior models and

discuss their properties. For example, we will see that the Student-t
model can be interpreted as an infinite mixture with a variance hidden
variable or that the BG model can be considered as the degenerate
case of a MoG2 where one of the variances go to zero. Also, we will
examine the less known models of MoG3 and MoGGammas where
the heavy tails are obtained by combining a centered Gaussian and
two large variance non-centred Gaussians or Gammas.

In Section III, we examine the expression of the posterior laws
that we obtain using these priors and discuss then on complexity
of the Bayesian computation of the algorithms. In particular for the
mixture models, we give details of the joint estimation of the signal
and the hidden variable as well as the hyperparameters (parameters
of the mixtures and the noise) for unsupervised cases. In particular,
we examine the relative performances of MCMC and Variational
Bayesian Approximation (VBA) methods.

In Section IV, we compare the performances of these algorithms in
signal deconvolution, image restoration and Blind SourcesSeparation.

As a typical simulation result, we generated first a signalf(t)
using the BG model with parametersλ = .1, v = 10 over N = 200
samples. Then, we generated a PSFh(t) with a Gaussian shape over
L = 11 samples which is used to generate the observed datag(t) =
h(t) ∗ f(t) + ǫ(t) with a Gaussian noiseǫ(t) with variancevǫ = .5.
We then used these data with different algorithems to estimate f ,
noted f̂ and when needed the hidden variablesz, noted ẑ and the
hyperparametersθ noted θ̂. We then comparêf with f , ẑ with z

andθ with θ̂.
Finally, in section V we show some applications. More detailed

results will be on the final paper. A draft version is available on
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I. SPARSE TOTAL LEAST SQUARES

Consider the linear system Ax = b, with A ∈ Rm×n, b ∈ Rm.
Its total least squares (TLS) solution is given by

min ‖[E f ]‖F
s.t. (A + E)x = b + f

(1)

The solution results by taking [E f ] as the matrix with smallest
Frobenius norm that added to [A b] makes the result singular. As
such, it is related to the smallest singular value of [A b]: at optimality
we have ‖[E f ]‖F = σmin([A b]).

Assume now that we search sparse TLS solutions x ∈ Rn to
Ax = b, having at most s nonzero elements (‖x‖0 = s). In principle,
the sparse TLS problem can be solved in two steps.

1. Selection of nonzero elements. If I is a set of s indices (the
support), then denote xI ∈ Rs the vector of nonzero elements of
x (and assume the other elements are zero) and AI ∈ Rm×s the
matrix formed by the columns of A with indices in I. The support
of the sparse TLS solution with s nonzeros is given by

min
I

σmin([AI b])

s.t. |I| = s
(2)

2. Once the support is determined, the solution xI results from
solving the standard TLS problem (1) with AI instead of A.

Problem (2) is hard; it can be solved exactly only by enumeration.

II. PREVIOUS WORK

To the best of our knowledge, the sparse TLS problem is discussed
only in [1], where applications are also presented. Sparsity is pro-
moted by replacing the criterion of (1) with ‖[E f ]‖2F + λ‖x‖1.
The problem is not convex and an algorithm based on alternating
coordinate descent is proposed in [1].

The sparse TLS problem can be related to the computation of the
lower restricted isometry property constant associated with a matrix
D, which is the smallest δmin

p such that (1− δmin
p )‖y‖22 ≤ ‖Dy‖22,

for all vectors y with ‖y‖0 = p. This amounts to finding the p
columns of D that form a matrix whose smallest singular value
is minimum. In the sparse TLS case, we have D = [A b] and
p = s + 1, but b must always be one of the selected columns. The
greedy algorithm from [2] is hence applicable, starting with b and
then searching for s columns of A in the attempt of solving (2).

III. PROPOSED GREEDY ALGORITHM

The structure of the proposed greedy algorithm is

Input: A, b, s
1. for j = 1 : n

1.1. I = {j}
1.2. for i = 2 : s

1.2.1. find ”best” column ak, k 6∈ I
1.2.2. increase support: I ← I ∪ {k}

1.3. compute vj = σmin([AI b])
Output: support I that gives the smallest vj

Note that all columns of A are tried for the first position in I, but
the other positions are filled using the standard greedy strategy. For
the ”best” column selection in 1.2.1 we have used three heuristics.
Two are known (but have been used in a different context in [2]):
i) minimum singular value (MSV): the column k 6∈ I for which
σmin([AI∪{k} b]) is minimum; ii) the choice from [2]. MSV is very
slow and is used mainly for reference.

The third heuristic, named SAS, is our contribution and consists of
choosing the column that makes the smallest angle with the subspace
generated by the already selected columns and b. Denoting SI =
Im([AI b]) the ”best” column is found by

k = argmax 6̀∈I
projSIa`

‖a`‖
. (3)

The projection of a column on SI can be computed easily if a partial
QR factorization (J is the complement of I)

QT [b AI AJ ] =

[
R P
0 S

]
(4)

is available at iteration i of step 1.2, where R ∈ Ri×i, i = |I|+1, is
upper triangular and Q is orthogonal. After the orthogonal transfor-
mation, the matrix P contains the projections of columns a`, ` 6∈ I,
on SI (while S contains the components orthogonal on SI). Hence,
the ”best” column is that for which ‖p`‖/‖a`‖ is maximum.

The SAS greedy algorithm for TLS can be organized as a QR
factorization with pivoting. The complexity of step 1.2.1 is O((m−
i)(n− i)), similar to that of the algorithm from [2].

IV. RESULTS

As a sample of our simulations, the table below shows the final
value σmin([AI b]) averaged over 100 systems generated with
m = 100, n = 300. For each sparsity s, a solution x with ‖x‖0 = s
is generated with elements from N (0, 1); A has elements from
N (0, 1/n) and b = Ax. Ideally, a sparse TLS algorithm should
solve (2), getting σmin([AI b]) = 0; a nonzero value means that
only an approximation has been found. The results show that for
relatively low values of s, SAS is better or as good as other methods.
Simulations with noise added to A and b have a similar relative
behavior. In a simple Matlab implementation, the execution time is
3-5 times larger than that of [2].

s 5 10 15 20 25 30
MSV 0 0 0.0107 0.0353 0.0836 0.1039

[2] 0 0 0.0100 0.0339 0.1072 0.1225
SAS 0 0 0 0.0078 0.0495 0.1205
[1] 0.0001 0.0127 0.0423 0.0686 0.0887 0.1086
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Abstract—Super-resolution is always referred to be able to recover
the object’s Fourier transform spectrum exceeding Rayleigh resolution
limit [1]. In some practical imaging problems, super-resolution is possible
by taking advantage of priori knowledge of the object. Sparsity priori
has long been considered in the efforts of super-resolution. It allows for
exact image recovery from a number of samples much smaller than that
required by the Nyquist/Shannon theorem, and is therefore expected to
realize super-resolution recovery [2], [3], [4], [5]. CS, as a mathematical
algorithm, is developed following mathematical interests and the recovery
conditions are based on mathematical concepts. While Super-resolution,
as a concept of imaging technique, calls for physical conditions, which
imposes more priori information besides sparsity. In this paper, we impose
sparsity together with other priori based on physical scheme and focus
on the super-resolution behavior. This helps to relate the mathematical
theorems to the physical quantities and makes good sense to the practical
applications.

I. INTRODUCTION

In this paper, we consider simple sparse discrete object composed
of several spikes which can take positive and negative values. This
corresponds to the objects that carry both amplitude and phase
information. Our imaging system is a simple 4-f scheme with a
diaphragm of varying size on the Fourier spectrum plane which
determines the optical resolution of the scheme. The measurements
are also taken on the Fourier plane but are restricted to the area inside
this diaphragm, which imposes another priori about sampling. From
the point of imaging technique, there’re two problems we care most.
One is that given an imaging scheme, what kind of object can we
recover. The other is given a sort of object, how to design a scheme
that is able to recover it.

From the theoretical point of view, without loss of generality, the
measurements could be set equispaced on the Fourier plane with
separation equal to Nyquist sampling interval. Consequently, for a
certain imaging scheme, there will be a fixed corresponding sensing
matrix. Through analyzing the sensing matrix, it’s possible to know
the condition that guarantees the successful recovery and furthermore
to classify the recoverable and unrecoverable objects. There’re actu-
ally several theorems [2], [6], [7], [8] presenting conditions for the
success recovery. These conditions can be classified into two groups
[6]: one is for the uniqueness of the solution to L0 minimization; the
other is for that the unique solution to L1 minimization (Basis Pursuit,
BP) is equivalent to the solution to L0 minimization. Comparisons
are taken between these two groups to show that based on the same
band-limited measurements, the different super-resolution behavior
between the ideal optimized recovery (L0 minimization) and the
compromised but costless result (L1 minimization).

From the practical point of view, to design or improve an imaging
scheme, the matrix analysis above should be discussed together with
other physical concepts, such as diffraction limit, super-resolution
factor and Signal-to-Noise Ratio (SNR) et al.. For example, one
important parameter to analyze the sensing matrix is its mutual
coherence, which, in our scheme of low-pass system, is always
related to the physical mutual coherence between two adjacent pixels,
and further related to the diaphragm size, the diffraction limit and

super-resolution factor. This kind of connections between physical
and mathematical concepts bring advantages to imaging applications,
because it’s generally more convenient to measure the physical
quantities than to analyze a matrix. And by combining those recovery
conditions with physical concepts, it helps to figure out the ultimate
limit of the super-resolution for certain object.

We also analyze the influence of quantum fluctuations on super-
resolution behavior. It has been shown that when taking another priori
knowledge of the object (i.e. the object is finite), the ultimate limit of
super-resolution is determined by the SNR in the imaging scheme [9],
[10], [11]. However, if we take the priori of sparsity, the ultimate limit
role seems to be replaced by other forms of Uncertainty Principle
[2], [12]. In our simulations, we control the SNR by changing the
light intensity on the object. And it’s shown from both theory and
simulation that the quantum fluctuations influence less on super-
resolution when using the sparsity priori.In this paper we shall give
the results of our simulations.
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Abstract—We present a fast compression sensing (CS) reconstruction
algorithm with computation complexity O(M2), where M denotes the
length of a measurement vector Y = φX that is sampled from the signal
X of length N via the sampling matrix φ with dimensionality M ×N .
Our method has the following characteristics: (1) it is fast due to a closed-
form solution is derived; (2) it is accurate because significant components
of X can be reconstructed with higher priority via a sophisticated design
of φ; (3) thanks to (2), our method can better reconstruct a less sparse
signal than the existing methods under the same measurement rate M

N
.

I. INTRODUCTION

In the context of compressive sensing (CS) [1], the constraint
of sparsity enables the possibility of sparse signal recovery from
measurements (far) fewer than the original signal length. Moreover,
the measurements generated from random projection of the original
signal via a sampling matrix are equally weighted; i.e., no one is more
significant than the others. Thus, compressive sensing is inherently
weaken in handling less sparse signals such as highly textured images.
The problem here is that can we yield weighted measurements so that
non-sparse or less sparse signals can be properly reconstructed than
the existing CS recovery solutions?

In this paper, we present a sophisticated design of the sampling ma-
trix φ that can directly capture “important” measurements. With these
information, the quality original signal can be sparsely reconstructed
based on the important (corresponding to low-frequency) components
in some transformed domain. Thus, the qualities of reconstructed
signals mimic those of JPEG compressed images.

II. PROPOSED METHOD

We start from the random projection, Y = φX, and observe that
if important information of X can be sampled and stored in Y , then
it is possible to reconstruct X with fewer important measurements.

For this, we introduce a linear operator T and impose it to random
projection to obtain T ◦ Y = T ◦ (φX), where ◦ stands for a linear
operation. This equation is further derived1 based on the principle of
linear operations [2] as:

T ◦ Y = T ◦ (φX) = (T ◦ φ)(T ◦X). (1)

Eq. (1) indicates that if T is a transform operator, then T ◦ X is
a transformed vector in some transform domain. In particular, the
positions at lower frequencies in T ◦X indicate important transformed
coefficients and T ◦ Y indicates important measurements since they
are linear combinations of significant transformed coefficients. For
simplicity, the operator ◦ will be omitted below.

In order to sample “important” transformed coefficients from TX
and speed up recovery, we design a new sampling matrix, (Tφ)z, by
setting the last N −M columns of Tφ to be zeros. This implies that
the non-zero columns of (Tφ)z form a full-rank matrix with rank
M . Once (Tφ)z is built in the transform domain, it is inversely
transformed back to the time/space domain and a sophisticated
designed sampling matrix Φ = T−1((Tφ)z) is obtained.

1The proof is omitted here due to space limit.

Now, Φ is stored in the sensors for the purpose of compressive
sensing. We have the following derivations:

Y = ΦX => TY = (TΦ)(TX) = (Tφ)z(TX). (2)

Recall that the last N − M columns of (Tφ)z are zeros. This
means that we only sample the lower-frequency components in TX
by discarding the remaining higher-frequency components. In order
to speed up sparse signal recovery, let Φs denote the submatrix of
dimensionality M × M by discarding the zero columns of (Tφ)z,
and let (TX)s denote the M×1 vector by discarding the last N−M
transformed coefficients. Therefore, we can derive:

TY = Φs(TX)s => (Φs)−1TY = (Φs)−1Φs(TX)s = (TX)s . (3)

It is evident that the signal X can be approximately and fast
recovered if (i) Y is available via random projection in Eq. (2); (ii) Y
is processed via Eq. (3); and (iii) (Φs)−1TY is padded with N −M
zero values (to obtain TX) and inversely transformed via T−1.

III. ANALYSIS AND RESULTS

The principle of our method is to preserve the top K-lowest
frequency components of TX. Here, T is chosen to be a DCT
operator. Thus, we have M = K and the computation complexity
of recovery is in the order of O(M2); i.e., only one inverse matrix
operation and two DCT operations are required.

In this paper, a 1D DCT structure is exploited to design Φ. The
original signal X can be approximately reconstructed from as many
measurements as the number of coefficients sampled via Eq. (2).
We provide recovery comparison of some CS algorithms [1] under
different measurement rates (MRs) in Table I2. The exploitation of
the simple structure inherent in the Haar wavelet is also studied in
our framework.

TABLE I
RECOVERY COMPARISON OF CS ALGORITHMS FOR BARBARA IMAGE.

Methods Metrics MR (6.25%) MR (12.5%) MR (25.0%)

Our Method PSNR(dB) 22.20 23.78 26.27
(DCT-based) SSIM 0.59 0.67 0.81

Lasso PSNR(dB) 16.82 20.31 23.91
SSIM 0.33 0.51 0.71

OMP PSNR(dB) 17.62 19.86 22.53
(Sparsify toolbox) SSIM 0.34 0.48 0.65

Basis PSNR(dB) 16.82 20.31 23.91
Pursuit SSIM 0.33 0.51 0.71
StOMP PSNR(dB) 10.94 12.51 21.92

(SparseLab toolbox) SSIM 0.23 0.37 0.61
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ABSTRACT

Recent studies show that the thickening of the carotid
artery wall is indicative of the corresponding hardening and
thickening of coronary arteries. Physicians can determine the
tendency of a patient to the atherosclerosis through a B-mode
ultrasound scan of the common carotid artery (CCA). This is
a non-invasive technique that allows to take a measure of the
Intima-Media Thickness (IMT)[1]. The IMT is the distance
between the lumen-intima interface and the media-adventitia
interface of CCA’s far wall. Currently, doctors measure the
IMT by setting manually only a few points, which may distort
the results. Image segmentation can detect the IMT contour
throughout the artery length, which leads to better results
and allows us to extract statistics such as the maximum, the
minimum or the average IMT with more precision.

In this work, an efficient image segmentation technique
is proposed. Segmentation is treated as a pattern recognition
problem and is solved using a neural network ensemble (also
called committee machine) to improve the accuracy achieved
by a single net. In particular, the results from three experts
are combined by a ’meta’ neural network. With the proper
training, the proposed system is able to recognize the pixels
belonging to the IMT contour. Once the networks are trained,
the proposed method allows getting IMT measurements in an
automatic way.

The networks in our system are Multi-Layer Perceptrons
(MLP). These nets have been trained by means of the
Optimally-Pruned Extreme Learning Machine (OP-ELM)[2],
which is easy to use and allows faster learning than others
such as Backpropagation (BP) algorithm. Furthermore, it is
able to select the optimal network size. For this purpose, OP-
ELM uses both MultiResponse Sparse Regression (MRSR)[3]
algorithm and an efficient Leave-One-Out (LOO) criterion.

To perform the neural network training, we need a training
set composed of ultrasound images and the associated desired
outputs (supervised learning) called target images. The target
images are binary images in which white pixels (with value
’1’) show the IMT boundaries. A windowing process is applied
over the original image to obtain the training set. In our case,
square windows are used varying the size of the window
in the different experts of the committee machine. Thus, a
square neighborhood is taken as input pattern for each pixel
under study. In order to reduce the computational cost, a
feature selection procedure has been applied. The Least Angle
Regression (LARS)[4] algorithm has been used to provide

a ranking of input features, which are ordered according to
their relevance to the classification task. Then, the analysis is
performed in a stepwise manner by adding at each iteration a
new feature and training the net with the OP-ELM algorithm.
Finally, the network model (number of input features and
hidden neurons) with lowest error is selected. This strategy
is followed to design the artificial neural networks of our
system and the results show that it is possible to reduce the
dimensionality of the data (see Fig. 1).

Fig. 1. Selected pixels to construct the input patterns to the three experts.

Figure 2 shows the preliminary results obtained by the
system (combination of three neural networks). It can be seen
that the obtained segmentation is satisfactory.

Fig. 2. Input image (left), target image (center), and output image (right).
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Abstract—In grid-based Compressive Sensing (CS) approaches, the
dictionary is built from a pre-defined grid. The bases off the grid
points are left out of the dictionary. Some current Matching pursuit
(MP) methods suffer from a degradation of performance when some
off-grid bases exist. In this paper, a novel method namely Adaptively
Sparse Recovery base on Constrained Total Least Squares (ASR-CTLS)
is proposed to find the best bases even if they are off the grid. In the
ASR-CTLS, the grid and the dictionary are adaptively updated with
the CTLS technique. The convergence of the ASR-CTLS is theoretically
analyzed, and numerical experiments on harmonic retrieval demonstrate
the improvements of the ASR-CTLS.

I. SIGNAL MODEL AND ALGORITHM

Consider the grid-based CS model:

y = Φ(g)x + w (1)

where y is the measurement vector with N elements, and w is
the noise vector. x is to be learned with D coefficients. Φ is
built from the grid g = [g1, g2, . . . , gD], which is generated by
dividing a continuous space into D discrete grid points. For example,
in harmonic retrieval we divide the frequency space and the Φ
is the Fourier transform matrix. Off-grid basis emerges when the
corresponding frequency point is not included in g.

We don’t often have enough priori to generate the perfect grid to
guarantee that all of the nonzero elements in x exactly lie on the grid
points. So we cast the grid as an unknown parameter, and search the
joint estimation of x and g via solving the optimum problem:

x̂, ĝ = arg min ‖x‖0, s.t. ‖y −Φ(g)x‖2
2 ≤ η (2)

where η is the noise power. In most cases, solving (2) is a complicated
non-linear optimum problem. We introduce an iterative method.

Suppose ĝ(k) is the estimate of g, and is available after the kth
iteration. To solve (2), loop between the following two equations:

xMP = arg min ‖x‖0, s.t.
‚‚‚y −Φ

“
ĝ(k)

”
x
‚‚‚2

2
≤ η (3)

bg(k+1), bx(k+1) = arg min
g,x

‖y −Φ (g)x‖2
2 , s.t.supp(x) = Λ (4)

Most MP methods presented before, e.g. OMP [2], CoSaMP [3], can
be applied for (3) to obtain the sparsest solution xMP of x. Notate
Λ = supp (xMP) as the support set of xMP, and Λ is utilized in (4)
to reduce the dimension.

The numerical solution to (4) can be obtained by three steps:
estimate the mismatch in the grid with the CTLS technique; update
the grid with the mismatch; estimate the xΛ with the projection onto
the updated grid, where (·)Λ as the elements indexed in Λ. The
convergence of the solver for (4) can be theoretically guaranteed if
the mapping Φ(g) is linear.

Define the mismatch in the grid as ∆gΛ =
ˆ
∆g1, . . . , ∆g|Λ|

˜T ,
thus gΛ = bg(k)

Λ +∆gΛ. Linearize the ΦΛ (gΛ) at the local neighbor-
hood of bg(k)

Λ with Taylor expansion as

ΦΛ (gΛ) = ΦΛ

“bg(k)
Λ

”
+

|Λ|X
i=1

Ri

“bg(k)
Λ

”
∆gi +

|Λ|X
i=1

o
`
∆g2

i

´
(5)

where o(·)is the ”big o” notation. Neglect o
`
∆g2

i

´
, and substitute

(5) into (1), thus we can apply the CTLS to estimate ∆gΛ.

c∆g
(k)

Λ = arg min
∆gΛ,w,xΛ

‚‚‚‚» ∆gΛ

w

–‚‚‚‚,
s.t. − y +

 
ΦΛ

“
g

(k)
Λ

”
+

|Λ|P
i

Ri∆gi

!
xΛ + w = 0

(6)

The solution to (6) is derivated in [1].

II. SIMULATIONS

We choose harmonic retrieval to illustrate the improvement of
the proposed method. There are three sinusoids in observation. The
amplitudes are α1 = 20, α2 = 10, α3 = 1; and the frequencies are
f1 = 16.3/N , f2 = 18.24/N , f3 = 29.12/N , where N = 64.
Define SNRi = |αi|2/σ2, where σ2 is the noise power. The
frequency space is uniformly divided into m grid points in xMPm

(OMP100N , CoSaMP2N , etc.), and N points in the ASR-CLTS. Fig.1
compares the Mean Square Errors (MSEs) of the frequency estimates.
The results show that the ASR-CTLS obtains higher accuracy than
OMP and CoSaMP especially while recovering the smallest sinusoid,
and converges to the CR bound when the SNR is not less than -4dB.
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Fig. 1. The MSEs of the frequency estimates obtained in 500 independent
Monte-Carlo trials. Three subplots are respectively dedicated to three sinu-
soids. CRB denotes the corresponding Cramer-Rao Bound.
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Abstract—In this paper we present a novel method for online identifi-
cation and recovering jointly sparse signals. This method can be useful
in a number of applications such as blind sampling and reconstruction
of multiband signals. There are several algorithms in the literature for
solving jointly sparse vectors, but most of them are either greedy or not
online algorithms (see e.g. [3]). Hence, introduce an inherent delay in the
process. We introduce a novel online algorithm which is not greedy (in
time) and improves the probability for success in identifying the joint
support even in the presence of noise.

I. INTRODUCTION

In our work the model we look at is of the form

y[ t ] = Ax[ t ] (1)

Where y[t]∈ Rm represents the measured data, x[t]∈ Rn the signal
we wish to reconstruct and A a known dictionary. It is assume
that m < n and x[t] are jointly (in time) sparse. Namely, if S[t]
denotes the support of x[t], we have S =

⋃
t

S [t] the joint support

(|S| << n). This problem is referred to in the literature as Infinite
Measurement Vectors (IMV) problem. Solving the problem at each
t and letting S [t− 1] ⊂ S [t] leads to a greedy algorithm. Our
approach is motivated by the ideas in [2]. Specifically, we solve at
each time instance the problem:

(P1) min ‖W [t]x [t]‖1 such that y [t] = Ax [t]

where W [t] is diagonal matrix with non-negative entries and

W [t] = f (W [t− 1] , S [t− 1]) (2)

This type of algorithm is not greedy, by this we mean that it does
not force S [t− 1] ⊂ S [t] and allows us make mistakes at a specific
time, but still be able to, eventually, identify the right support with
future data.

A. Noisy Environment

Under noisy environment conditions our model of work is changing
to:

y[ t ] = Ax[ t ] + v[ t ] (3)

where y, A and x are as above, v[ t ] ∈ Rm is an additive noise.
We assume that the noise is stationary, thus the way we cope with
this problem is by measuring the noise variance, random several
thousands of numbers under the same PDF and finally taking the
largest one, we mark this number as C. Now with α ∈ [ 0.5,1 ], we
solve the next problem:

(P2) min ‖W [t]x [t]‖1 such that ‖y [t]−Ax [t]‖∞ 5 α · C

Figure 1. Success probability for true support evaluation with n=200, m=100
and | S |=60.

Figure 2. Success probability for true support evaluation with n=200, m=100,
| S |=20 and SNR = 30[ dB ]

II. RESULTS

Figure 1 describes a simulation with n=200, m=100 and |S |=60.
The simulation was repeated 250 times and the success ratio recorded.
We note that after t=15 we get a very high probability of success
even in this case where |S | = 60. Moreover it seems that solving
independently at each time instance will result in a close to zero
probability of success.

Figure 2 describes a simulation result under noisy conditions with
additive white gaussian noise. n=200, m=100, |S |=20 and SNR =
30[ dB ] . The simulation was repeated 250 times and the success
ratio recorded. This result demonstrates the algorithm robustness to
noise.
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I. INTRODUCTION

Refractive deflectometry is a tomographic modality that measures
light ray deflection when passing through transparent objects [1].
Combining multiple parallel light rays under various incident angles
allows one to image the internal refractive-index distribution (or
map) of complex materials (like optical fibers) while escaping from
some limitations of interferometric systems (e.g., unstability to object
vibrations, thickness measurement range).

II. FORWARD DEFLECTOMETRIC MODEL

Given a transparent material optically described by the refractive-
index map n : x = (x1, x2) ∈ R2 → n(x), a 2-D deflectometric
measurement of n consists in measuring the deflection angle ∆(τ, θ)
of a light ray of equation {x : x · pθ = τ}, for τ ∈ R, θ ∈ [0, 2π),
and pθ = (− sin θ, cos θ) perpendicular to the light ray direction
tθ = (cos θ, sin θ). Mathematically, a first order linear approximation
relates ∆ to the Radon transform of the transverse gradient of n,
that is:

∆(τ, θ) =

Z
R2

`
∇n(x) · pθ

´
δ(τ − x · pθ) d2x. (1)

Since the Central Slice Theorem relates the 1-D Fourier Transform
(FT) of an image Radon projections with the image 2-D FT [3],
denoting n̂ as the 2-D FT of n, we can write

y(ω, θ) :=

Z
R

∆(θ, τ) e−iτωdτ = i ω bn`ω pθ´. (2)

Alternatively, restricting (ω, θ) to R+ × [0, π) and setting k =
(k1, k2) = ω pθ with k = ‖k‖ = ω, we have ỹ(k) := y(Rk) =
i k bn(k), with the π/2 rotation matrix R (i.e., Rpθ = tθ).

Therefore, assuming that the continuous refractive-index map n
is approximated by N = N1N2 values n ∈ RN arranged on a
N1×N2 regular 2-D grid, the previous relations show that optical
deflectometry can be associated to the forward linear model

ỹ = WSF n + ε, (3)

where ỹ =
`
ỹ(k1), · · · , ỹ(kM/2)

´T ∈ CM/2 ' RM is the mea-
surement vector on the observed frequency set K = {kj}16j6M/2,
F ∈ CN×N is the 2-D discrete FT, S ∈ {0, 1}M/2×N is a
binary matrix selecting K in F output (with SS∗ = Id), and
W ∈ iRM/2×M/2 = idiag(k1, · · · , kM/2). The vector ε ∈ CM/2
is a (complex) Gaussian noise εj ∼ N (0, σ2) + iN (0, σ2) with
‖ε‖2 < ε2 := (M + c

√
M)σ2 with high probability for c = O(1).

III. INVERSE PROBLEM SOLVING

A realistic sampling of the Fourier plane as materialized by S is
obtained from a set of T radial lines associated to T different angular
observations θ in (2). Most of the time, reconstructing n from (3)
is an ill-posed inverse problem since M = M(T ) < N . However,
actual refractive-index maps of transparent materials are composed
of slowly varying areas separated by sharp boundaries (material
interfaces). This inverse problem can therefore be regularized by
assuming a Bounded Variation (BV) model of n. In other words,
we solve

arg min
u

‖u‖TV s.t. ‖ỹ −WSFu‖ 6 ε, (4)

where minimizing ‖u‖TV =
P
j |(∇u)j | promotes the BV (cartoon

shaped) model while imposing data fidelity ‖ỹ−WSFu‖ 6 ε [2].

Part of this work is funded by the DETROIT project (WIST3/SPW, Belgium).

In order to quantify the “ill-posedness” of (3), we simplify the
sampling made by S by picking uniformly at random M/2 complex
frequencies on K (i.e., M real values) with K ⊂ {k : k1 > 0}.

Practically, the convex minimization (4) can be recast as
arg minu ıC

`
Au
´

+ ‖u‖TV , where A = WSF ∈ CM×N ,
C = {v ∈ CM : ‖ỹ − v‖ 6 ε}, and ıC(v) is the indicator function
equals to 0 if v ∈ C and ∞ otherwise. Due to the presence of
the diagonal operator W , a particularity of optical deflectometry
compared to common tomographic techniques (e.g., MRI or radio
interferometry), the sensing matrix A presents some unfavorable
properties as it is not a tight frame (AA∗ 6= I). The recently
proposed algorithm by Chambolle and Pock (Algorithm 1 in [2]),
which is based on a primal-dual formulation, relax the conditions on
the operator, making this method suitable for solving (4) despite a
non-differentiable objective.

IV. RESULTS

Chambolle-Pock (CP) method was analyzed using the well-known
Shepp-Logan image (Fig. 1) which, being characterized by sharp
edges and large smooth areas, allows simulating the refractive-
index map characteristics. CP is compared with the Least-Squares
(LS) Method, an intuitive way of solving linear systems using the
operator pseudoinverse A† := A∗

`
AA∗

´−1
= F ∗S∗W−1 such

that
ˆ

arg minu ‖u‖ s.t. ỹ = Au
˜

= A†ỹ . Fig. 1 shows the
behavior of both algorithms regarding noise and the under-sampling
ratio (M/N ), presenting the mean SNR computed for 10 trials in the
reconstruction of the map.
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Fig. 1: SNR vs M/N .

V. CONCLUSION

Important results were obtained in refractive-index map recon-
struction from (simulated) optical deflectometry. The inverse problem
reconstructing n from (3) is regularized by minimizing the Total
Variation norm ‖n‖TV of the map (BV model). Thanks to the CP
algorithm dealing with the untight operator A, the method yields
optimal reconstruction with high robustness to noise even for few
measurements. This must be compared with the LS method that
degrades rapidly for increasing noise level as the diagonal operator
W increases its impact on low frequencies. An open issue still
remains in order to represent more accurately the data measured by
the instrument. As Fourier Transform of Radon projections provides
data in radial coordinates, further development must be done to find
its correspondence in Cartesian coordinates.
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Introduction Greedy algorithms such as Matching Pursuit
(MP) [1] and its variants (Orthogonal MP [2]) are widely used
for sparse approximation. They are based on the repetition of two
steps: 1: Select an atom in the dictionary and 2: Update residual.
We are here interested in the first step. MP and OMP select
the atom φγi in the dictionary Φ that maximizes the residuals
projection φγi = arg maxφγ∈Φ |〈Rn−1f, φγ〉|. There is always
a tradeoff in the choice of the dictionary. If it is dense, we have
a fast decay of the approximation error (as a function of the
approximation order), but computations get cumbersome, and the
cost of encoding each coefficient may become prohibitive for
coding. If the dictionary is small (slight or no overcompleteness),
computations are fast, the coding cost per coefficient is low, but
more coefficients are needed. Other schemes ensure a better local
fit of the selected atoms using a different correlation function [3].
Also, probabilistic approaches have been introduced [4] where
successive runs with random sub-optimal atom selection are
performed, then averaging yields a robust sparse approximation.

Here, we propose a different paradigm, that mitigates the draw-
backs of using a large dictionary while keeping most of the ben-
efits. We keep the standard correlation function but we randomly
switch the subdictionary at each iteration, where the subdictionary
is a subset of a large dictionary. Adaptive techniques have been
proposed that first search in a fixed smaller subdictionary, and
then find a local maximum in the large dictionary [1], [5]. Our
approach keeps this dictionary subsampling paradigm, but the
small subdictionaries are randomly alternated so as to maximize
the probability that the large dictionary is evenly spanned during
the process. The key point is that the choice of subdictionary
is not adaptive, but is parametrized by a fixed pseudo-random
sequence, also known by the decoder. In other words, we have the
(theoretical) complexity of working with a small dictionary, and
the small coding costs, but the whole large dictionary is spanned.
In the following, we study the quality of the approximation: we
prove the benefits of this method for synthetic signals, and show
numerically that this behavior extends to the case of real signals.

Theoretical justification with sparse signal model Let as-
sume an exact-sparse model f =

P
j∈J αjφj with the {φj}

a subset of a larger dictionary Φ verifying φTj φk ≈ δj,k. Let
X be a random variable from which are drawn the projections
Xk = |〈f, ψk〉| ≈ |αj0(k)〈φj0(k), ψk〉| in the subdictionary
Ψ ⊂ Φ, where j0(k) = arg maxj |〈φj , ψk〉|. Let us denote
Xk:J the kth biggest X , then the residuals energy at the nth

iteration of a Matching Pursuit in Ψ is given by ‖Rnf‖2 =
‖f‖2 −

Pn−1
k=0 X

2
J−k:J because the n biggest atoms have been

selected one after another and subtracted. Now if Ψ is changed
at iteration k, it is equivalent to redrawing the projections Xj .
Since k components of f have already been (nearly) subtracted,

Fig. 1. Average residual energy decay for MP (continuous) and
OMP (dashed) on full dictionary (green), fixed subdictionary (blue) and
randomly varying subdictionaries (red - variance zone in light grey) for
a 256-length noisy signal (20 runs)

only J − k values are drawn. Atom selected at iteration k is the
one that maximizes this J −k length sequence, and the residuals
energy if the dictionary changes at each iteration is described by
‖Rnf‖2 = ‖f‖2−

Pn−1
k=0 X

2
J−k:J−k. Knowing Φ, one can derive

a probabilistic model for X and using order statistics, prove that
E(X2

J−k:J−k) ≥ E(X2
J−k:J), thus ensuring faster convergence

of the new algorithm.
Conclusion The proposed algorithm appears to be suitable

for sparse approximation of complex signals (though not for
recovery). The potential benefits are in low bitrate compression,
and we exhibit several sound examples were these advantages
show off. The unsupervised nature of the algorithm and the
randomness introduced in the atom selection makes it very easy
to design worst-case scenarii for which the algorithm would
converge slower than a pursuit over a fixed dictionary. However,
on average, and with a small empirical variance, the proposed
scheme appears to have the coding costs of the small dictionary
with a decay rate close to the one on the large dictionary.
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Abstract—Regularization methods for the solution of ill-
posed inverse problems can be successfully applied if a
right estimation of the regularization parameter is known.
While there exists a significant amount of research in the
literature on the development of appropriate parameter
selection methods for Tikhonov regularization [7], until
now the L1 regularization case has been considered in only
a few very recent papers, [1], [3], [4], [5], [6] that focus
only on Total Variation regularization. Among them, the
only method that, to our knowledge, does not require any
assumption on the noise level, has been proposed in[1]
using variational distribution approximations. It updates
the regularization parameter in an iterative manner and
seem to be very effective for TV restoration problems when
information about the perturbation level is not available.
Nevertheless, in spite of the good performance of this
method, its computational cost is still too high for real-
time practical applications. In this work we consider the
image deblurring problem and we evaluate its solution
using a sparsity based regularization approach solved by
means of the iterative forward-backward splitting method.
The main contribution of this research is the proposal of a
novel adaptive automatic rule for the estimation of the reg-
ularization parameter in L1-based restoration problems,
without requiring any assumption about the perturbation
process. This rule, developed in the context of the iterative
forward-backward splitting method [2], exploits the infor-
mation yielded by this approach to dynamically update the
parameter value following the evolution of the objective
functional. The iterative algorithm automatically stops,
when the parameter has reached a seemly near optimal
value. A large number of numerical experiments confirm
that the proposed rule yields restoration results competitive
with those of the best state-of-the-art algorithms.
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Abstract—We are interested in hybrid/morphological decomposition of
signals which can be expressed as the sum of two sparse components in
a well choosen frame and a residual – such as images (edges+textures)
or audio signal (tonals + transcients). Thanks to a Bernoulli-Gaussian
prior on the synthesis coefficients, we derive an unsupervised algorithm
in the spirit of ISTA with iteratively adapted thresholding/shrinkage. The
model can be directly extended to joint-sparsity structure.

I. MODEL

Let U = {un ∈ CN}N1
n=1 and V = {vm ∈ CN}N2

m=1 two frames of
CN . Let Λ and ∆ two finit subsets of N. We are interrested in” signals
y ∈ CN which admit an hybrid [1]/Morphological [3] expansion:

y =
X
λ∈Λ

αλuλ +
X
δ∈∆

βδvδ + n , (1)

where n ∈ CN is some noise, and where αλ, βδ ∈ C are the synthesis
coefficients. The sets Λ and ∆ are called the significance maps: if
λ ∈ Λ, then αλ 6= 0, and if λ /∈ Λ, then αλ = 0.

We choose a Bernoulli-Complex Gaussian prior which naturally
induces sparsity. Let us definine the indicator variables:

Xn =


1 if n ∈ Λ
0 otherwise ,

X̃m =


1 if m ∈ ∆
0 otherwise ,

(2)

with p and p̃ the membership probabilities: ∀n , p = p(Xn =
1) , ∀m , p̃ = p(X̃m = 1) . The corresponding model can then
be written:

y =

N1X
n=1

Xnαnun +

N2X
m=1

X̃mβmvm + n . (3)

In the following, we restrain ourself to the significance map Λ, all
the results can be directly applied to the map ∆. with the Bernoulli-
Gaussian prior:

p(αλ|Xλ) = (1−Xλ)δ0 +XλCN (0, σ2, 0)

where the complex-Gaussian density are univariate.
We finally assume n ∼ CN (0, σ2

0I) .

II. ALGORITHM DERIVATION

A. GEM

For the sake of simplicity, we rewrite (1):

y = Uα + Vβ + n = Φθ + n , (4)

with Φ = [UV] and θ = (αT ,βT )T .
Insipired by [2], one can use a Generalized Expectation-

Maximization (GEM) strategy in order to maximize the penalized
likelihood. By introducing the hidden varriable z, we have

z = θ + µn1 y = Φz + n2 , (5)

with n1 ∼ CN (0, I) and n2 ∼ CN (0, σ2
0I − µ2ΦΦT ) (µ2 <

σ0
‖ΦΦ∗‖ ).

a) E-setp: : ẑt = θt + µ2

σ2
0
Φ∗(y −Φθt) .

b) M-step: : the maps are first estimated by marginalization and
maximization

Λ̂t+1, ∆̂t+1 = arg max
Λ,∆

E{log(p(Λ,∆|y, z, T ))|y,θt,Λt,∆t, T} ,

then the coefficients θ:

θ̂
t+1

= arg max
θ

E{log(p(θ|Λ̂t+1, ∆̂t+1,y, z, T )|y,θt,Λt,∆t, T}

B. Maps estimation

For the significance map Λ we obtain:

X̂t+1
λ =

8<:1 if |ẑtλ| >
r

(µ2+σ2)µ2

σ2 ln
h

1−p
p

µ2+σ2

µ2

i
0 if not .

Remark: with a joint-sparsity model on the map, we obtain a
similar rule on the norm of groups of coefficients.

C. Coefficients estimation

We can then estimate the coefficients. If X̂t+1
λ = 1

θ̂t+1
λ = arg max

θλ

‖ẑtλ − θλ‖
2µ2

+
‖θλ‖2

2σ2
=

ẑtλ
1 + µ2/σ2

, (6)

and θt+1
λ = 0 if not.

III. RESULTS

We apply such a strategy to a xylophone signal with a union of
Gabor dictionnaries. We find σ̂2

0 = 0.001 (output SNR ' 16 dB) for
σ2

0 = 0.0009 (input SNR ' 12 dB).

Fig. 1. Estimated Gabor coefficients of the two significance maps.
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Abstract—The `1-minimization problem min{ ‖x‖1 : Ax = b }, also
known as Basis Pursuit (BP), has become important in Compressed Sens-
ing due to its ability to yield the sparsest solution of an underdetermined
linear system Ax = b under certain conditions. In the past few years, a lot
of new algorithms solving (BP) or some (possibly regularized) variant of it
have been developed. We contribute the ISAL1 to the available spectrum
of solvers, which is a specialization to (BP) of a new infeasible-point
subgradient algorithm (ISA) for solving convex constrained minimization
problems. In this extension of the classical projected subgradient methods
from nonsmooth optimization, the projections onto the feasible set need
only be approximated, thus allowing for a potentially large reduction of
the computational burden. In particular, in ISAL1, inexact projection
onto {x |Ax = b } by performing a fixed small number of conjugate
gradient steps suffices to obtain convergence. Moreover, we will present
results of an extensive computational comparison of various state-of-the-
art `1-solvers, also including ISAL1. Furthermore, we show how a new
optimality check can speed up solvers and at the same time attain the
true optimum (up to numerical precision).

I. INTRODUCTION

We propose a new infeasible-point subgradient algorithm (ISA)
for the constrained minimization of convex functions. In contrast to
typical projected subgradient schemes [1], the projection onto the
feasible set is only approximated in the ISA. Hence, the iterates may
be infeasible throughout the whole procedure, and still convergence
can be achieved under certain conditions. This allows to tackle prob-
lems where computing the exact projections is expensive, especially
for large-scale instances.

Here, we focus on one such problem: Finding the minimal-`1-norm
solution to an underdetermined linear system, i.e., (BP). This problem
has become very important in the field of Compressed Sensing,
because under certain conditions (e.g., the RIP), it allows for exact
recovery of the minimum-support solution (`0-minimizer) of Ax = b,
which is generally NP-hard to find.

Facing the vast choice of avaible (BP) solvers developed over the
past years, one may wonder which one is “the best”? Of course, there
are multiple answers (if any), depending on context, desired accuracy,
etc. Here, we aim at an exact solution of (BP), without concern
about special cases or related problems such as `0-minimization. To
this end, we conduct extensive numerical experiments with various
prominent `1-minimization solvers and the new ISAL1. We also
present an easily implementable optimality check and demonstrate its
usefulness by further computational experiments with several solvers.

II. NEW ALGORITHMS

The existing arsenal of solvers for (BP) includes methods based on
various ideas, e.g., augmented Lagrangeans, interior-point schemes,
spectral projected gradients or several penalized models. We propose
to add the ISA modification of projected subgradient methods.

∗ Supported by a DFG research grant.

A. ISA and ISAL1

The ISA iteration consists mainly of the iterate update xk+1 =
P

εk
X (xk − αkh

k), with stepsize αk, subgradient hk and the inexact
projection operator P εk

X for the feasible set X with accuracy εk.
We investigated the ISA for several stepsize choices and obtained
convergence results depending on the behaviour of the series of
projection accuracies (εk).

ISAL1 specializes the ISA for solving (BP). For this particular
problem, projection onto {x|Ax = b} amounts to solving a linear
system. This can be done by applying the method of conjugate gra-
dients (CG). For the inexact projections in ISAL1, we derive bounds
on the CG residual norm which (among other things) guarantee the
method’s convergence. In practice, convergence can still be obtained
when only computing a fixed small number of CG steps.

B. Heuristic Support Evaluation

Our implementation of ISAL1 exhibited a typical drawback of
subgradient methods: slow local convergence. This issue was success-
fully overcome by integrating a Heuristic Support Evaluation (HSE)
scheme, which allows “jumping” to the exact optimal solution by
roughly checking a well-known optimality criterion for (BP) (see,
e.g., [2]) on the estimated true solution support.

III. COMPUTATIONAL COMPARISON OF `1-SOLVERS

We carefully constructed a test set consisting of a wide range
of (BP) instances, each with an optimal solution guaranteed to
be unique (by employing the ERC or the Source Condition). We
compare several well-known algorithms which can provably solve
general (BP) instances, namely: SPGL1 (www.cs.ubc.ca/labs/scl/
spgl1), YALL1 (yall1.blogs.rice.edu), `1-MAGIC (www.acm.caltech.
edu/l1magic), SolveBP of SparseLab (sparselab.stanford.edu) (em-
ploys PDCO), L1-Homotopy (users.ece.gatech.edu/∼sasif/homotopy),
and ISAL1. As a reference, we also solved (BP) as a linear program,
using the dual simplex method of CPLEX. Most available implemen-
tations seem to go for a balanced speed-accuracy trade-off by default,
i.e., aiming at fast termination with a medium-accuracy result which
hence not necessarily qualifies as an “exact solution”. Integrating
the HSE however shows that without needing to change algorithmic
parameters, one can achieve both a speed-up and highest accuracy at
the same time. The potential of the HSE is supported by numerical
experiments with several solvers.
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A classical result in the theory of artificial neural networks (ANNs) is 
Cybenko’s theorem [1] which states that a perceptron with at least one 
hidden layer, sigmoidal output non-linearity and a sufficiently high, but 
finite, number of nodes can approximate any continuous and bounded 
function on a bounded domain within a given accuracy. This theorem 
has made multi-layer perceptrons (MLPs) a popular instrument for 
classification problems. 

Perceptrons are inspired by the information processing in neurons 
[2], which makes them a trivial choice for modeling cognitive pro-
cesses. Again inspired by the architecture of mammal brains, one would 
expect a several layers to be required in perceptron models. Deep MLP 
networks are however very difficult to train with the back-propagation 
algorithm. Supervisory information is needed and the fact that it cannot 
be provided for all hidden layers forms the crux of the problem.  

In this paper, the parallels and differences between non-negative 
matrix factorization (NMF) and a single layer perceptron are discussed. 
NMF is capable of working without supervision but is equally capable 
of exploiting supervision information, which makes it very well suited 
to overcome the training problems in multilayer architectures. However, 
NMF additionally shows behavior that is observed in the brain: it 
performs lateral inhibition in a single layer and has masking properties.  

NMF finds two factors W ∈ RN×R and H ∈ RR×T, with positive or 
zero entries such that a data matrix V ∈ RN×T with positive or zero 
entries is approximated by W H. The Frobenius norm and the (gene-
ralized) Kullback-Leibler divergence (KLD) are considered here as cost 
function to express the proximity of V and W H. The weights W are 
learned unsupervisedly by applying NMF to training data V, where 
different training tokens occupy different columns in V.  

In this contribution the multiplicative update algorithms proposed in 
[3] are cast in the flow diagrams of Figure 1. When classifying a single 
test token, V and H become vectors v and h, while W is assumed to be 
known from the training phase. Finding the NMF solution for h is 
compared to node activation in an ANN. The left pane shows the single 
layer perceptron which maps v to the hidden nodes y through the weight 
matrix W. A sigmoidal output non-linearity h(y) with diagonal structure 
is then applied. In NMF with Frobenius norm (middle), h(y) is replaced 
by the shaded box. The right pane shows the flow diagram for the KLD 
metric, which differs only from the middle pane by swapping the input 
projection Wt and the element-wise division ⊘. Both NMF problems are 
shown to have lateral inhibition behavior, i.e. a hidden node will 
deactivate nodes with similar weights (or neighboring neurons in the 
brain). Physically, inhibition leads to categorical perception. Mathema-

tically, inhibition corresponds to the case where the minimal (Frobenius 
or KLD) cost is achieved on the constraint boundary. 

Supervisory information can be introduced in NMF by augmenting V 
with G such that. Gij = 1 if the i-th class is present in token j (and zero 
otherwise) 

H
W

X

V

G








≈







  

On test tokens, H can be computed as before from V and subsequently 
the class information G can be estimated by forming X H. In other 
words, with supervision, X acts like an output layer of a perceptron. 
With the previous result, NMF can be interpreted as an easily learnable 
perceptron with an output mapping that shows lateral inhibition, which 
adds to the cognitive motivation to use it as a building block for deep 
ANN structures. 

Finally, the cognitive motivation is strengthened by observing that 
NMF also shows masking behavior in the sense that the sparsity pattern 
of H is robust to perturbations in V and not all changes to the input data 
affect H and hence the classification. A first masking mechanism is 
through L1 regularization of the cost function. Secondly, a positive bias 
term V0 can be added: find the best H s.t. V ≈ W H + V0. The case 
where V0 = W H0 for some H0 could model a reminiscent (decaying) 
neuron activation. The effect is that the cone of possible V spanned by 
the model W H + V0 is moved away from the origin, which will 
typically activate more constraints at the optimal H and can even lead to 
solutions that are not affected by the data V at all (masking).  

In summary, there are strong parallels between a single layer 
perceptron and NMF, the latter showing the additional cognitive 
properties of unsupervised learnability, lateral inhibition and masking. 
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Fig. 1: A flow diagram representation of a single layer perceptron (left), NMF with Frobenius norm (middle) and NMF with KLD (right).  ⊗ and ⊘ 

are element-wise multiplication and division respectively. “z-1” is a memory over one iteration of the update formulae of [3]. 
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Abstract—This work presents a new framework for recovering fi-
nite alphabet signals. We address the problem of finding solutions
to underdetermined systems of linear equations drawn from finite
alphabet. We formulate this problem as a recovery of sparse signals
from highly incomplete measurements. It is known that sparse solutions
can be obtained by `1 minimization, through convex optimization. This
relaxation procedure in our problem fails in recovering sparse solutions.
However, the reconstruction of the finite alphabet signals is possible
without exhibiting the sparse solutions. Empirical results show that
this approach provides good recovery performance for random sensing
matrices.

I. INTRODUCTION

Compressed sensing (CS) is a new concept that exploits sparsity
of the signals in the acquisition process. The objective of CS is to
reduce the number of the non adaptive measurements to be taken
from signals, that is, the number of necessary measures required to
reconstruct the signals. Recently, CS has attracted growing interests
in a variety of fields, including source separation, radar, and commu-
nication.

In this study, instead of acquiring sparse signals, we wish to
acquire signals drawn from a known finite alphabet. In this paper,
we show that this problem can be expressed as a sparse recovering
problem. The convex relaxation of this problem provides good
recovery performance for random sensing matrices when a condition
on the number of missing measurements holds.

II. PROBLEM FORMULATION

Suppose we are given y ∈ Rm and a full-rank mixing matrix Φ ∈
Rm×n with m < n. The underdetermined linear system of equations
y = Φx has infinitely many solutions. The objective of this work is
to find solutions drawn from a finite alphabet A = {a1, · · · , ap}.
Denote D and J the matrices in Rm×np such that:

D =


a 0p . . . 0p

0p a . . . 0p

...
...

...
...

0p . . . 0p a


T

J =


1p 0p . . . 0p

0p 1p . . . 0p

...
...

...
...

0p . . . 0p 1p


T

where a = (a1, · · · , ap)T and 0p, 1p are the column vectors of Rp

with respectively zero and one entries.
Finally, denote S(y) := {s ∈ Rnp : ΦDs = y and Js = 1n}.

Lemma 2.1: Suppose y = Φx has a unique solution f in An.
Then, there exists a unique ŝ ∈ Rnp such that

ŝ = arg min ‖s‖0 s.t s ∈ S(y)

and f = Dŝ.

As suggested by literature on sparse reconstruction [1], we propose
to reconstruct f from y by choosing

s̃ = arg min ‖s‖1 s.t s ∈ S(y)
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and putting f̃ = Ds̃. The next section shows the performance of
our approach for random sensing matrices.

III. EXPERIMENTAL RESULTS

Pertinence of the approach is experimentally assessed as follows:
Consider signals with n = 256 samples randomly drawn from finite
alphabet of cardinality p. The alphabet can be chosen arbitrarily.
Given the number m of measurements, we sample the mixing matrix,
for each iteration, with independent Gaussian entries and we compare
the recovered f̂ and the original f signals. The recovery is regarded
as successful if the relative error ‖f̂ − f‖2/‖f‖2 is less than 10−5.
For each m, we repeat 100 iterations of the experiment and average
the results. The results are presented above for p = 2 and p = 4.
Our experiments show that finite alphabet signals can be accurately
recovered provided that the number m of measurements is above
n(p−1)

p
.

IV. DISCUSSIONS

Numerical simulations show that the minimum `1 norm solution
enables recovery of finite alphabet signals for Gaussian matrices when
m > n(p−1)

p
. This result has not yet been proved. Work in progress

on this proof involves kernels of random matrices.
The condition m > n(p−1)

p
can be rewritten in the form kp <

n where k is the number of missing measurements. Since similar
recovery conditions can be found in [3], it can be wondered whether
some uncertainty principle would not underly the approach proposed
above.

On the other hand, the minimization problem in our approach can
be related to the `1-synthesis described in [2].
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Abstract—Recent works in sound mosaicing synthesis [1], [2] have
proposed algorithms that permit instantaneous mixtures of several
sources atoms, based on sparse signal representation techniques. We
propose combining l1 regularization with linear dynamical smoothing
as in the Kalman filter (also in [3], [4]) to promote desired transitions
between atoms, while adapting the generic approach to the mixture
mosaicing context. Furthermore, we modify the dynamics cost slightly
to further promote sparse scores in the case of non-negativity. This is a
work in progress in which we can present some sound examples, but for
which the proposal is not fully validated.

I. INTRODUCTION

Mosaicing, a form of sample-based sound synthesis, consists in
transforming and compositing disparate source sound segments from
a database so that the result will match perceptual features (descrip-
tors) of a target sequence. Classical methods [5], [6] considered
matching a single source segment to a given target context (frame),
while more recent methods [1], [2] consider sparse mixtures of
multiple source segments at once.

Several criteria for these systems concern the dynamics–the
changes from frame to frame–of the composition, or more abstractly,
the sampling process that generates it. Do the descriptors of the
source units change too much from frame to frame (continuity)?
Do the transformation parameters applied to the sources change
rapidly from frame to frame (transformation continuity)? Does the
sampling process maintain a steady context within the source material
by choosing contiguous blocks of material from the original source
context, or does it jump around (contiguity)? By modeling dynamics
we can search or sample sequences or mixtures that have desired
properties above.

II. PROPOSAL

Given a matrix or linear operator D describing favored atom
transitions from state to state, one way of generalizing it to mixtures
of atoms is simply considering a form of linear dynamics where:
xt+1 = Dxt + wt. xt and xt+1 are mixture vectors for time steps
t and t + 1, wt represents innovation, or deviance from expected
dynamics.

Combining the smoothing version of the Kalman filter with an l1
regularization term as in Basis Pursuit Denoising (BPDN) would give
us the following program:

min
x

T∑
t=1

‖Axt − bt‖22 + λ1

T∑
t=2

‖Dxt−1 − xt‖+ λ2

T∑
t=1

‖xt‖1 (1)

Under the scheme given by Problem 2, if the transition matrix D
gives a number of possibilities for a given atom, the most likely suc-
cessor state (where the innovation cost is zero) will include nonzero
weights on all of those possibilities. Therefore, when D includes
many alternatives for transitions between atoms, the innovation cost
and the sparsity cost are working against each other.

In our application, where weights are constrained to be non-
negative, we propose modeling alternatives using an innovation cost
where only positive innovation is penalized, that is having no cost
when weights decrease (state is closer to sparsity than deterministic
dynamics). We implement this by introducing a non-negative dummy
variable y:

min
x

T∑
t=1

‖Axt − bt‖22 + λ1

T∑
t=2

‖Dxt−1 − xt − yt‖+ λ2

T∑
t=1

‖xt‖1

(2)
where both x and y are constrained to be elementwise non-negative.
In this scheme, successor states are not penalized for atom transition
alternatives not taken, only for unlikely transitions that are taken.

III. OTHER APPROACHES

Several other approaches are also likely feasible for encouraging
dynamics in synthesis. For one, we could extend the Kalman filter
objective with a nonlinear model, which may render the objective
function non-convex. In this case, heuristic methods based on convex
relaxation such as DC Algorithms (DCA) could be used to find
heuristic solutions quickly.

Sampling or Monte-Carlo approaches are also feasible. In partic-
ular, particle filters (Sequential Monte Carlo) have been used for
tracking, and allow both nonlinear dynamics, and use non-parametric
estimates for the states.

Finally, so called greedy signal decomposition methods could
perhaps be adapted to account for dynamics. In practice this would
be analogous to sampling in many ways. Perhaps a good example of
this in image synthesis would be Ashikhmin [7].
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Abstract—We consider the problem of recovering block-sparse signals,
i.e. signals that can be written as linear combination of vectors drawn
from of a union of a few subspaces. To find a block-sparse representation
of a signal, we consider two classes of non-convex programs based on
minimizing a mixed `q/`0 quasi-norm (q ≥ 1) and their convex `q/`1

relaxations. The first class directly penalizes the norm of the coefficient
blocks, while the second one penalizes the norm of the reconstructed
vectors from the blocks of the dictionary. For each class of convex
programs, we provide conditions under which they are equivalent to the
original non-convex programs. We apply our methods to classification
tasks and obtain significant improvements relative to the state-of-the-art.

I. INTRODUCTION

The recovery of block-sparse signals involves solving a system of
linear equations of the form

y = Bc =
[
B[1] · · · B[n]

]
c, (1)

where B consists of n blocks B[i] ∈ RD×mi whose atoms are gen-
erated by a di ≤ mi dimensional subspace Si. The main difference
with respect to classical sparse recovery is that the nonzero elements
for the solution of (1) correspond to a few blocks rather than a few
elements of B. We say that a vector c> =

[
c[1]> · · · c[n]>

]
is

k-block-sparse, if at most k blocks c[i] ∈ Rmi are nonzero.
The problem of finding a representation of a signal y that uses the

minimum number of blocks of B can be cast as

P`q/`0 : min

n∑
i=1

I(‖c[i]‖q > 0) subj. y = Bc, (2)

where I(·) is the indicator function and q ≥ 0. Since (2) is an NP-
hard problem, we consider the following `1 relaxation of P`q/`0

P`q/`1 : min

n∑
i=1

‖c[i]‖q subj. y = Bc, (3)

which is a convex program for q ≥ 1. We also propose an alternative
approach based on solving the non-convex program for q ≥ 0

P ′`q/`0: min

n∑
i=1

I(‖B[i]c[i]‖q > 0) subj. y = Bc. (4)

While P`q/`0 penalizes the norm of the coefficient blocks, P ′`q/`0

penalizes the norm of the reconstructed vectors from the blocks. Since
P ′`q/`0

is NP-hard, for q ≥ 1, we consider the `1 convex relaxation

P ′`q/`1 : min

n∑
i=1

‖B[i]c[i]‖q subj. y = Bc. (5)

In what follows, we derive conditions under which the convex
programs P`q/`1 and P ′`q/`1

, respectively, are equivalent to P`q/`0

and P ′`q/`0
for arbitrary q ≥ 1. In doing so, we allow for an arbitrary

number of atoms in each block of the dictionary, thus relaxing the
assumption of uniqueness of the representation made by state-of-
the-art methods, which restrict the blocks of a dictionary to have
linearly independent atoms. To characterize the relation between
blocks of a dictionary, we introduce the notion of mutual/cumulative
subspace coherence, which can be thought of as natural extensions
of mutual/cumulative coherence from one to multiple subspaces.

Definition 1: Mutual subspace coherence is defined as

µS , max
i 6=j

µ(Si,Sj), (6)

where µ(Si,Sj) is the cosine of the smallest principal angle between
subspaces Si and Sj . k-cumulative subspace coherence is defined as

ζk , max
Λk

max
i/∈Λk

∑
j∈Λk

µ(Si,Sj), (7)

where Λk is a subset of k different elements from {1, . . . , n}.
To characterize the relation among atoms of a dictionary, we define

the following notions.
Definition 2: For a dictionary B, we define εq as the smallest

constant such that for all i there exists a full column-rank submatrix
B̄[i] ∈ RD×di of B[i] such that for all c̄[i], we have

(1− εq)‖c̄[i]‖2q ≤ ‖B̄[i]c̄[i]‖22 ≤ (1 + εq)‖c̄[i]‖2q. (8)

Define σq as the smallest constant such that for all i and c[i]

‖B[i]c[i]‖22 ≤ σq‖c[i]‖2q. (9)

Roughly speaking, εq characterizes the best q-restricted isometry
property among all submatrices of B[i] that span subspace Si. Also,
from definition, we have 1 + εq ≤ σq . We have the following result.

Theorem 1: For a signal that has a k-block-sparse representation
in B, the solution of P`q/`1 is equivalent to that of P`q/`0 , if√

σq/(1 + εq) ζk + ζk−1 < (1− εq)/(1 + εq). (10)

A stronger sufficient condition is given by

(k
√
σq/(1 + εq) + k − 1)µS < (1− εq)/(1 + εq). (11)

Similar conditions can be found for the equivalence between P ′`q/`1

and P ′`q/`0
for arbitrary q ≥ 1 and for dictionaries with arbitrary

number of atoms in each block. We refer the reader to [1] for details.

II. APPLICATION TO FACE CLASSIFICATION

Assume we have a training set from P classes, where each class
consists of the data drawn from a few subspaces. That is,

B = [ B[1] B[2] B[3]︸ ︷︷ ︸
Class1

| · · · |B[n− 1] B[n]︸ ︷︷ ︸
ClassP

] (12)

Given a test data y that belongs to one of the classes, the goal
is to find the class to which the test example belongs. Since each
class consists of a few blocks of the dictionary, the class of the test
example can obtained by finding the minimum number of blocks that
reconstruct y. Thus, the classification problem can be cast as a block-
sparse recovery problem. We applied the proposed convex optimiza-
tion programs for face classification on the Extended YaleB Database,
which consists of a total of 2432 face images for 38 individuals
corresponding to P = 38 classes. Our results improve the state-of-
the-art classification results by 10% on the dataset.
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Abstract—A performance analysis of Multiple-Sensor-System(MSS) on
a compressive sensing(CS)[1] w.r.t. the per-sensor-measurements(PSM) is
studied. In the proposed MSS, sensors make measurements using CS
and the decoder jointly recover signals from them. We obtain the upper
bound on the recovery failure probability for given K-sparse signals,
derive the relationship between PSM and the number of sensors(S) for
the recovery. We examine the effect of SNR and S for the recovery. We
use the concept of joint typicality proposed by Shannon[6]. We shows
that PSM converges to the sparsity(K) as S increases for given K-sparse
signals. Theoretical result is consistent with [3][4][5].

Index Terms—Compressive Sensing, Multiple Sensor System. Joint
Recovery.

I. INTRODUCTION AND MOTIVATION

Multiple-Sensor-System (MSS) deploys many sensors to a limited
region and uses them to measure the signal from a common infor-
mation source in different locations. In MSS, high resolution signal
can be obtained as many sensors are used to measure a common
phenomenon from many places. However, the coverage areas of sen-
sors may significantly overlap with each other as they are distributed
in a limited region. This causes redundancy in the measurement
signal. The transmission of the redundant signal to the fusion center
is a significant communication costs. There is tradeoff between the
resolution and the redundancy on the number of sensors. To work on
this tradeoff relationship, we use the idea of the compressive sensing
[1]. CS reduces the number of measurements while it recovers the
signal perfectly. Using this technique, it is possible to reduce the
redundancy and obtain high resolution simultaneously by reducing
the per-sensor-measurements (PSM).

To investigate our problem, we propose to use an information
theoretic tool, the concept of Jointly Typicality [6]. It was also used
by Akcakaya and Tarokh [2] for the single sensor case. Using this
tool, we can derive the upper bound on the failure probability as a
function of PSM, the number of sensors, the sparsity and the noise
variance.

Clearly, the MSS problem is different from a single sensor system
in many aspects. For an appropriate modification of the tool for MSS
problem, we should consider these differences. One big difference is
the signal correlation among the sensors. For a successful extension,
we use the inter-signal correlation in the system model and the
decoder also takes advantage of this signal correlation for a signal
recovery. To make the correlation model, we assume that each sensor
has the same sparsity and shares the same support set which is the
set of indices for the non-zero elements. Obviously, in the recovery,
the decoder using this prior information gains benefits.

II. THEOREMS

Theorem 1: Let the rank of Fs,J be K for each s and J be any
candidate set, M > K, σ2 = min(

∑
i∈I\J xs(i)

2) over s, and
δ > 0. Then, P{Fail|x} converges to zero as the number of sensors
increases.

Theorem 2: Let the rank of Fs,J be K for each s and J be any
candidate set, M > K, σ2 = min(

∑
i∈I\J xs(i)

2) over s, δ > 0,

Si be the number of sensors of the ith MSS, σ2
i be the noise variance

of the ith MSS and P1{Fail|x} ≤ γ. If the noise variance increases,
i.e.,σ2

1 < σ2
2 , then, the sufficient condition for P2{Fail|x} ≤ γ is

S2 ≥ S1 max

f
(
δ
σ2
1

M
M−K

)
f
(
δ
σ2
2

M
M−K

) , g
(

σ2
1

σ2
min,1

+ δ
σ2
min,1

M
M−K

)
g

(
σ2
2

σ2
min,2

+ δ
σ2
min,2

M
M−K

)
 .

(1)
We note that f(x) = log(1 + x) − x, g(x) = log(x) − x + 1,

σ2
min,i ≡ min(

∑
j∈I\J xs(j)

2) + σ2
i over s and J , J denotes any

subset with size K expect for I and I denotes the set whose entries
are corresponding to indices of the nonzero elements in signal. All
theorems will be explained in the next section.

III. CONTRIBUTIONS AND CONCLUSIONS

We use the described correlation model with noisy observation.
First, we have found how many per-sensor-measurements (PSM) are
needed for successful recovery in the MSS problem. As the number
of sensors increases, how does PSM change? There is a limit we have
found. We will show this behavior and will show how PSM depends
on the sparsity. We have Theorem 1 that the infimum of PSM is the
sparsity obtained as the number of sensors increases. Different from
the results in [3], [4], [5], the work of ours gives analytical results.
Our analysis works for a small number of sensors as well. Second, we
have shown that the decoder which uses the prior information obtains
benefit in terms of the Signal to Noise Ratio (SNR). Specifically,
Theorem 2 tells us how the required SNR decreases as the number
of sensors changes.
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I. INTRODUCTION AND MOTIVATION

Compressive sensing (CS) have got attention as a promising signal
processing technique to reduce information rate of sparse signals
[1]. One line of CS related researches are to devise low complexity
recovery algorithms since the conventional L1-norm based recovery
algorithms still have high computational complexity for practical
applications. Recently, a few researchers have made an attempt to
apply probabilistic message passing (PMP) ideas to CS recovery [2],
[3] since PMP has provided a successful solution for low complexity
decoding while showing suboptimal performance in channel coding
problems, such as low-density parity check codes [4].

Motivated by such previous works, in this paper, we propose a
new least square estimation (LSE) based CS recovery algorithm by
applying PMP, called PMP-LSE. It is well known that CS recovery
is basically an underdetermined system and it can be reformed as
an overdetermined system with the support set information (SI).
Therefore, in the proposed algorithm, PMP undertakes to find the
SI of the signal to reform the recovery to an overdetermined case,
and then LSE completes the recovery using the SI. Mainly, PMP-
LSE has two strong benefits. First, PMP-LSE shows outstanding
performance with noisy measurements by removing the noise effect
from elements belonging to the non-support set. Second, PMP-LSE
prevents the recovery from diverging. Under certain conditions, PMP
based algorithms fails in the recovery due to divergence caused by a
large number of iterations. In the algorithm, however, the possibility
of the divergence highly decreases since PMP is only used to search
the SI with a few iterations.

II. PROBLEM SETUP

We consider a sparse signal x ∈ RN whose sparsity is character-
ized by q, named sparsity rate. With the sparsity rate q, each element
of x belongs to the support set denoted by S. Hence, |S| corresponds
to Binomial random variable with B(N, q). Let xS ∈ R|S| denote
a vector consisting of nonzero elements belonging to S, and assume
that each element of xS follows Gaussian distribution with N(0, σ2

x).
We also assume that the sensing matrix is a well-designed binary
matrix, i.e., Φ ∈ {0, 1}M×N , according to [5] such that the
measurements y ∈ RM are generated by y = Φx. Then, noisy
measurements z ∈ RM at the decoder are described as z = y + n,
where each element of n ∈ RM is Gaussian noise with N(0, σ2

n).

III. ALGORITHM

The algorithm is divided into two parts: PMP and LSE.
i) PMP: PMP consists of two kinds of probability calculations based
on Bayesian rule: Variable to check message (VCM, vi→j) and check
to variable message (CVM, cj→i) calculation where i and j indicate
the index of elements of x and z, respectively.

VCM : vl
i→j := p{xi|z} = Clp{xi} ×

∏
k:ϕki=1,k ̸=j

cl−1
k→i (1)
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Fig. 1. MMSE performance of PMP-LSE (N=100,M=80,q=0.1,Niter=3)

CVM : cl
j→i := P{zj |xi} = P{zj −

∑
k:ϕjk=1,k ̸=i

xk + xi|xi}

= p{zj |any xk : ϕjk = 1} ∗ vl
k1→j ∗ · · · ∗ vl

kLj−1→j(2)

Here, l is the number of iteration, ϕji is the (j, i) th element of Φ, Lj

is the number of ones in jth row of Φ, and Cl is the normalization
constant for lth VCM. And, ∗ indicates the convolution operation.
At each iteration, PMP updates VCM and CVM by exchanging the
probabilistic messages among the elements of x and z. After a few
iterations, PMP distinguish the elements of the support set with a
certain threshold denoted by Vth.
ii) LSE: Once the SI is given, xS is easily estimated only using
the corresponding columns of Φ, denoted by ΦS, i.e., xS =
(ΦT

SΦS)−1ΦT
Sz. By combining the SI and xS, PMP-LSE completes

to find the recovered signal x̂.

IV. NUMERICAL RESULTS

To demonstrate the performance, we simulated PMP-LSE with CS-
BP [2]. Figure 1 plots the MMSE per elements as a function of SNR
for variety of thresholds with three PMP iterations. Figure 1 shows
that PMP-LSE outperforms CS-BP notably in low SNR region. The
reason is that PMP-LSE prevents the corruption of zero elements
from the noise effect by pre-detecting the support set using PMP.
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Abstract—We consider a class of optimization problems for sparse
signal reconstruction which arise in the field of Compressed Sensing
(CS). A plethora of approaches and solvers exist for such problems, for
example GPRS, SparseLab, `1 `s, `1 magic, FPC AS to mention a few.

Compressed Sensing applications lead to very well conditioned opti-
mization problems and therefore can be solved easily by simple first-order
methods. In this work we demonstrate that a second-order method such
as an interior point algorithm can be specialized for the CS problems
and offer a competitive alternative to the existing approaches. The new
approach is based on the Matrix-free Interior Point Method [1] in which
an iterative (Krylov-subspace) method is employed to compute an inexact
Newton direction. The matrix-free IPM does not require an explicit
storage of the constraint matrix but accesses it only to get the matrix-
vector products. It is therefore well-suited for solving large scale problems
because it can take full advantage of the low-complexity fast matrix-vector
operations. A partial Cholesky preconditioner is employed to accelerate
the convergence of the Krylov-subspace method. The computation of
the preconditioner requires only matrix-vector products and fits into
the matrix-free regime. Computational experience on the medium scale
one-dimensional signals (n = 4096) confirms that the new approach is
efficient and compares favourably with other state-of-the-art solvers.

I. INTRODUCTION

Interior point methods (IPMs) for linear and convex quadratic pro-
gramming enjoy an unequalled worst-case complexity result. Indeed,
they deliver a ε-accurate solution to such problems inO(

√
n ln(1/ε))

iterations, where n is the problem dimension. IPMs are usually
applied to solve problems to a high degree of accuracy (small ε, say,
10−8). However, it is straightforward to specialize them to work in a
significantly less demanding environment such as that of Compressed
Sensing where accuracy of ε = 10−1 is often all the user wishes for.

The optimization problems arising in Compressed Sensing applica-
tions are very well-conditioned and therefore trivial from optimization
point of view. This explains why the simple approaches based on
projected gradient can solve these problems so efficiently. In this
short note we argue that a specialized Interior Point Method (IPM),
implemented in the HOPDM solver, can offer a competitive approach
for optimization problems arsing in Compressed Sensing applications.

II. FUNDAMENTALS OF MATRIX-FREE IPM

The interior point solver for convex quadratic programming needs
to solve a particular weighted least-squares problem at each iteration.
This is usually done by a direct approach which is based on the
Cholesky factorization. In a relaxed environment in which only an
approximate solution of the problem is requested it is advantageous
to employ an iterative method such as for example the conjugate
gradient algorithm to solve the underlying system of linear equations.
An exact Newton method employed in the standard IPM is then
replaced with an inexact one [1].

TABLE I: Comparison table

Solver
R. Gaussian. Orth. R. Gaussian. Part. Hadamard

CPU times (sec)
CPU MSE CPU MSE CPU MSE

HOPDM 8.50 7.5e-3 12.36 1.5e-2 8.61 1.1e-2
GPSR 6 1.61 4.0e-4 1.15 1.9e-4 1.08 1.7e-4
FPC AS 0.53 7.3e-4 0.75 1.3e-4 0.75 1.1e-4
PDCO 10.29 1.8e-2 11.72 8.2e-2 10.04 7.6e-3
`1 `s 8.60 4.0e-4 5.50 1.9e-4 4.47 1.7e-4

To achieve fast convergence of the iterative algorithm one needs to
use a suitable preconditioner for the linear system. The preconditioner
in the Matrix-Free IPM [2] is constructed in two steps. Firstly, the
linear algebra subproblem is regularized and secondly a low-rank
partial Cholesky factorization for this regularized system is computed.
The process of computing the preconditioner does not require explicit
access to the Jacobian matrix: only matrix-vector multiplications with
this operator are needed and therefore the approach can take full
advantage of the low-complexity matrix-vector operations which rely
on the low-parametric representation of the Jacobian matrices.

III. COMPUTATIONAL EXPERIENCE

We consider CS problems analogous to the ones in [3]. The recon-
struction of the sparse signals is achieved via random Gaussian (R.
Gaussian.), orthonormalized random Gaussian (Orth. R. Gaussian.)
and partial Hadamard (Part. Hadamard.) m× n sensing matrices.

The table (I) shows the computational time and the mean squared
error (MSE = ‖x̂−x‖2

n
) of the reconstructed signals for the matrix-

free HOPDM and some of the existing state-of-the-art solvers:
GPRS, FPC AS, SparseLab (PDCO), `1 `s.

In the case of table (I), sparse signals n = 4096 with 160 ran-
domly placed spikes were generated. The sensing matrices: Gaussian,
orthonormalized Gaussian and partial Hadamard with m = 1024 and
n = 4096 were used. Moreover, white noise with σ2 = 10−4 is
added in the sampled signal and finally, the optimality tolerance for
the termination criteria of each solver has been set to 10−2.
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I. EXTENDED ABSTRACT

Adaptive filters are crucial in many signal processing applications.
Recently, a simple configuration was presented to introduce a bias
in the estimation of adaptive filters using an adaptively adjusted
multiplicative factorα(n), showing important gains in terms of mean
square error with respect to standard adaptive filter operation, mainly
for low signal to noise ratios (see [1]).

In this paper, we modify that scheme to obtain further ad-
vantages by splitting the adaptive filter coefficients intoM non-
overlapping blocks, and employing a different scaling factorαm with
m = 1, ..., M for the coefficients in each block. In this way, bias
vs variance compromise is managed independently in each block,
allowing an enhancement if the energy of the unknown system is
non-uniformly distributed, as it is the case of sparse identification.

The proposed scheme is based on a blockwise decomposition of
an adaptive filterw(n) with length N in blocks of P = N/M
coefficients each. In order to implement a scheme able to selectively
bias certain blocks of coefficients, we can multiply the corresponding
coefficients by a shrinkage factorαm to be adjusted according to
mean squared error (MSE) performance. The output of the ’block-
biased’ scheme can then be obtained as

yBB(n) =

M
∑

m=1

αmw
T

m(n)um(n) =

M
∑

m=1

αmym(n). (1)

whereum(n) andwm(n) are the blocks of input vector and adaptive
filter necessary to obtain the partial outputym(n) (see Fig. 1).

Note that forM = 1 this scheme is equivalent to that of [1].
However, when identifying an optimal solutionwo(n) with sparse
structure under white noise conditions, the apparent SNR affecting
filter weights will depend on each coefficient absolute value, thus
justifying the use of different multiplicative factorsαm. As explained
in [1] using αm < 1 decreases the variance of the estimation of the
optimal solution coefficients in exchange of an increased bias, making
it possible to reduce the overall MSE of the filter.

In this paper, a steady-state analysis is developed with the aim
of finding the optimal scaling factorsα∗m with m = 1, ..., M that
minimize the steady-state MSE of the proposed configuration. The
conclusions of this analysis are that:

α∗m =
1

1 +
E{‖ǫm(∞)‖2

2}
‖wo,m‖

2

2

(2)

and the minimum mean square error of the proposed configuration
for block-biased adaptive filtering will be

J∗ex,BB(∞) = σ2
u

M
∑

m=1

α∗mE
{

‖ǫ(∞)‖2
2

}

, (3)

Fig. 1. Block diagram of the proposed scheme. Note that we could employ
any kind of transversal adaptive filter.

which is less or equal than the MSE of the original unbiased filter,
with the equality holding forα∗m = 1 ∀ m.

In the paper we also present a practical algorithm for learning
and adapting the value of the scaling factors, since adaptiveαm(n)
learning rules are in general necessary to adapt to possible time-
varying optimum solutionwo or SNRs. Following [1], adaptive
scheme from [2] (originally proposed for adaptive filter combinations)
will be employed, where a normalized stochastic gradient algorithm
is followed in order to minimize the power of the whole error of the
scheme, i.e.eBB(n) = d(n)− yBB(n).

Whole paper includes a set of experiments to compare the steady-
state performance of our proposal and the optimum values resulted
from the analysis. This comparison shows that the proposed scheme is
able to approximate both the optimal steady-state value of mixing pa-
rameters and the optimal EMSE(∞). In addition, influence of number
of blocksM is studied, since its adjustment imposes a compromise
involving the gains of our proposal with respect to operation of a
single adaptive filter, and computational cost. Experimental evaluation
concludes with a study of the convergence properties of our scheme,
showing an appropriate performance and reconvergence ability when
SNR or unknown impulse response suddenly changes, without anya
priori information about filtering scenario.
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Blanchard, Jeffrey, 78
Blu, Thierry, 62
Bonada, Jordi, 121
Boursier, Yannick, 25
Brady, David, 12
Breitenreicher, Dirk, 100

Candès, Emmanuel, 71
Cartis, Coralia, 65
Casazza, Peter, 19
Cevher, Volkan, 66, 68
Chakrabarty, Dalia, 98
Charbonnier, Camille, 36
Chardon, Gilles, 95
Charles, Adam, 48
Chen, Guangliang, 33
Chen, Hung-Wei, 110
Chesneau, Christophe, 56
Chiquet, Julien, 36
Christensen, Mads, 88
Clothilde, Mélot, 25
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Richtárik, Peter, 29, 81
Rigat, Fabio, 98
Rilling, Gabriel, 23, 27
Rodet, Thomas, 117
Romberg, Justin, 38
Rozell, Christopher, 39, 48, 53, 82
Rubinstein, Ron, 73

Sánchez, Juan Morales, 111
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